Effects of high hydraulic pressure on the short-term retrogradation and digestive properties of Lonicern caerulea berry polyphenol-chestnut starch complexes.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Suwen Liu, Zhang Lu, Kai Zhang, Runzheng Wang, Xuedong Chang, Jingzheng Zhang
{"title":"Effects of high hydraulic pressure on the short-term retrogradation and digestive properties of Lonicern caerulea berry polyphenol-chestnut starch complexes.","authors":"Suwen Liu, Zhang Lu, Kai Zhang, Runzheng Wang, Xuedong Chang, Jingzheng Zhang","doi":"10.1016/j.ijbiomac.2024.139242","DOIUrl":null,"url":null,"abstract":"<p><p>Both fresh and processed Chinese chestnuts are susceptible to retrograde hardening, affecting their texture, flavor, and shelf life because of their high starch content. To reduce the short-term retrogradation of chestnut starch during the food processing of chestnut-based products, a complex of Lonicern caerulea berry polyphenols (LCBP) and chestnut starch (CS) was prepared using high hydraulic pressure (HHP). The results showed that LCBP reduced the water separation rate, hardness, elasticity, and short-range order of retrograde CS under HHP and improved light transmission. After aging for 1 day, the relative crystallinity of 600 MPa-8 % LCBP-CS was significantly reduced by 53.1 % compared with CS (p < 0.05), and its particle size distribution was more uniform, with a complexation rate of 63.9 %. Under the same pressure, the complex with 8 % LCBP showed a more significant short-term retrograde inhibitory effect. In addition, the resistant starch content of 600 MPa-8 % LCBP-CS was 61 %. Correlation analysis showed that the complexation rates of LCBP and CS positively correlated with short-term retrogradation and digestive resistance. In summary, HHP facilitates the formation of a LCBP-CS complex that inhibits short-term retrogradation and enhances digestive resistance, aiding in the development of hypoglycemic chestnut products with extended shelf lives.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"139242"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.139242","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Both fresh and processed Chinese chestnuts are susceptible to retrograde hardening, affecting their texture, flavor, and shelf life because of their high starch content. To reduce the short-term retrogradation of chestnut starch during the food processing of chestnut-based products, a complex of Lonicern caerulea berry polyphenols (LCBP) and chestnut starch (CS) was prepared using high hydraulic pressure (HHP). The results showed that LCBP reduced the water separation rate, hardness, elasticity, and short-range order of retrograde CS under HHP and improved light transmission. After aging for 1 day, the relative crystallinity of 600 MPa-8 % LCBP-CS was significantly reduced by 53.1 % compared with CS (p < 0.05), and its particle size distribution was more uniform, with a complexation rate of 63.9 %. Under the same pressure, the complex with 8 % LCBP showed a more significant short-term retrograde inhibitory effect. In addition, the resistant starch content of 600 MPa-8 % LCBP-CS was 61 %. Correlation analysis showed that the complexation rates of LCBP and CS positively correlated with short-term retrogradation and digestive resistance. In summary, HHP facilitates the formation of a LCBP-CS complex that inhibits short-term retrogradation and enhances digestive resistance, aiding in the development of hypoglycemic chestnut products with extended shelf lives.

高水压对金银花浆果多酚-栗子淀粉复合物短期降解及消化性能的影响。
新鲜栗子和加工栗子都容易发生逆行硬化,因为它们的淀粉含量很高,会影响它们的质地、风味和保质期。为了减少板栗淀粉在板栗基食品加工过程中的短期降解,采用高压(HHP)法制备了一种由Lonicern caulleleberry多酚(LCBP)和板栗淀粉(CS)组成的配合物。结果表明,LCBP降低了HHP下逆行CS的水分离率、硬度、弹性和近程顺序,并改善了透光性。老化1 d后,600 MPa-8 % LCBP-CS的相对结晶度较CS显著降低53.1 % (p < 0.05)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信