Dynamics of visual object coding within and across the hemispheres: Objects in the periphery

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Amanda K. Robinson, Tijl Grootswagers, Sophia M. Shatek, Marlene Behrmann, Thomas A. Carlson
{"title":"Dynamics of visual object coding within and across the hemispheres: Objects in the periphery","authors":"Amanda K. Robinson,&nbsp;Tijl Grootswagers,&nbsp;Sophia M. Shatek,&nbsp;Marlene Behrmann,&nbsp;Thomas A. Carlson","doi":"10.1126/sciadv.adq0889","DOIUrl":null,"url":null,"abstract":"<div >The human brain continuously integrates information across its two hemispheres to construct a coherent representation of the perceptual world. Characterizing how visual information is represented in each hemisphere over time is crucial for understanding how hemispheric transfer contributes to perception. Here, we investigated information processing within each hemisphere over time and the degree to which it is distinct or duplicated across hemispheres. We presented participants with object images lateralized to the left or right visual fields while measuring their brain activity with electroencephalography. Stimulus coding was more robust and emerged earlier in the contralateral than the ipsilateral hemisphere. Presentation of two stimuli, one to each hemifield, reduced the fidelity of representations in both hemispheres relative to one stimulus alone, signifying hemispheric interference. Last, we found that processing within the contralateral, but not ipsilateral, hemisphere was biased to image-related over concept-related information. Together, these results suggest that hemispheric transfer operates to filter irrelevant information and efficiently prioritize processing of meaning.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adq0889","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adq0889","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The human brain continuously integrates information across its two hemispheres to construct a coherent representation of the perceptual world. Characterizing how visual information is represented in each hemisphere over time is crucial for understanding how hemispheric transfer contributes to perception. Here, we investigated information processing within each hemisphere over time and the degree to which it is distinct or duplicated across hemispheres. We presented participants with object images lateralized to the left or right visual fields while measuring their brain activity with electroencephalography. Stimulus coding was more robust and emerged earlier in the contralateral than the ipsilateral hemisphere. Presentation of two stimuli, one to each hemifield, reduced the fidelity of representations in both hemispheres relative to one stimulus alone, signifying hemispheric interference. Last, we found that processing within the contralateral, but not ipsilateral, hemisphere was biased to image-related over concept-related information. Together, these results suggest that hemispheric transfer operates to filter irrelevant information and efficiently prioritize processing of meaning.

Abstract Image

视觉对象编码的动态内部和跨半球:对象在外围
人类的大脑不断地整合两个半球的信息,以构建一个连贯的感知世界的表征。描述视觉信息是如何随时间在每个半球中呈现的,对于理解半球转移如何促进感知至关重要。在这里,我们研究了每个半球内的信息处理随时间的推移,以及它在不同半球之间的不同或重复程度。我们向参与者展示左侧或右侧视野的物体图像,同时用脑电图测量他们的大脑活动。刺激编码在对侧比同侧半球出现得更早。呈现两个刺激,每个半球一个,相对于单独一个刺激,降低了两个半球表征的保真度,表明半球干扰。最后,我们发现在对侧(而非同侧)半球内的处理更倾向于图像相关信息而不是概念相关信息。总之,这些结果表明,半球转移的作用是过滤不相关的信息,并有效地优先处理意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信