Mou Zhang, Yilian Han, Yuanyuan Zeng, Tuo Wang, Ziyuan Wang, Yuhang Wu, Nan Li, Fernanda Leite Lobo, Xin Wang
{"title":"Understanding the Microbial Processes on Carbon Brushes that Accelerate Methanogenesis of Long-Chain Fatty Acids in Anaerobic Digestion","authors":"Mou Zhang, Yilian Han, Yuanyuan Zeng, Tuo Wang, Ziyuan Wang, Yuhang Wu, Nan Li, Fernanda Leite Lobo, Xin Wang","doi":"10.1016/j.watres.2024.123084","DOIUrl":null,"url":null,"abstract":"Lipids offer high energy recovery potential during anaerobic digestion (AD), but their hydrolysis generates long-chain fatty acids (LCFAs), which are difficult to biodegrade. The introduction of microbial electrolysis cells has been widely recognized as a promising strategy to enhance AD. However, it is still under debate whether the electrical circuit needs to be connected, as certain electrodes with large specific surface areas have been reported to enhance direct interspecies electron transfer (DIET) without requiring an external power supply. Here we confirmed that the carbon brush anode pre-acclimated with electroactive bacteria (EAB) was able to accelerate LCFA methanation. Although the applied potential achieved a rapid methane production, the coupling of homoacetogenesis and electrogenesis consumed part of the bioelectrohydrogen, reducing the maximum methane production rate by 5–13%. In the AD system with only carbon brushes added, the dominant methanogens shifted from <em>Methanosarcina</em> in solution to <em>Methanothrix</em> on brushes. Pre-enriching EAB further established a composite mechanism, with DIET driven by <em>Syntrophomonas, Geobacter</em> and <em>Methanothrix</em> as the primary pathway, and interspecies hydrogen transfer mediated by <em>Methanospirillum</em> as a complementary process, collectively optimizing LCFA methanation. Genetic regulation underlying microbial tolerance to high LCFA concentrations was then elucidated, underscoring the critical role of combining immobilized electrodes and pre-acclimated EAB in adapting to LCFA stress and improving lipid-rich wastewater treatment.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"1 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.123084","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lipids offer high energy recovery potential during anaerobic digestion (AD), but their hydrolysis generates long-chain fatty acids (LCFAs), which are difficult to biodegrade. The introduction of microbial electrolysis cells has been widely recognized as a promising strategy to enhance AD. However, it is still under debate whether the electrical circuit needs to be connected, as certain electrodes with large specific surface areas have been reported to enhance direct interspecies electron transfer (DIET) without requiring an external power supply. Here we confirmed that the carbon brush anode pre-acclimated with electroactive bacteria (EAB) was able to accelerate LCFA methanation. Although the applied potential achieved a rapid methane production, the coupling of homoacetogenesis and electrogenesis consumed part of the bioelectrohydrogen, reducing the maximum methane production rate by 5–13%. In the AD system with only carbon brushes added, the dominant methanogens shifted from Methanosarcina in solution to Methanothrix on brushes. Pre-enriching EAB further established a composite mechanism, with DIET driven by Syntrophomonas, Geobacter and Methanothrix as the primary pathway, and interspecies hydrogen transfer mediated by Methanospirillum as a complementary process, collectively optimizing LCFA methanation. Genetic regulation underlying microbial tolerance to high LCFA concentrations was then elucidated, underscoring the critical role of combining immobilized electrodes and pre-acclimated EAB in adapting to LCFA stress and improving lipid-rich wastewater treatment.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.