Insights on the electrochemical behavior of BZY and BZCY proton conductors densified with a low percentage of Ni or Cu

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Beatriz A. Riga-Rocha, Valdecir A. Paganin, Massimiliano Lo Faro, Sebastian Vecino-Mantilla, Zahreddine Hafsi, Fabiana Matos de Oliveira, Edson A. Ticianelli, Joelma Perez
{"title":"Insights on the electrochemical behavior of BZY and BZCY proton conductors densified with a low percentage of Ni or Cu","authors":"Beatriz A. Riga-Rocha, Valdecir A. Paganin, Massimiliano Lo Faro, Sebastian Vecino-Mantilla, Zahreddine Hafsi, Fabiana Matos de Oliveira, Edson A. Ticianelli, Joelma Perez","doi":"10.1016/j.electacta.2024.145631","DOIUrl":null,"url":null,"abstract":"The reduction of operating temperatures of solid oxide electrochemical cells requires the development of novel materials, particularly those with high conductive charge carriers. This scenario presents challenges in developing proton conductive electrolytes and optimizing thermal treatments for their densification. A simple strategy for obtaining dense BaZr<sub>0.8</sub>Y<sub>0.2</sub>O<sub>3-δ</sub> (BZY) and BaZr<sub>0.7</sub>Ce<sub>0.2</sub>Y<sub>0.1</sub>O<sub>3-δ</sub> (BZCY) ceramics, which represent the most frequently investigated proton conductive ceramics today, is presented in this paper and complies with using a low percentage of nickel or copper (1 wt.%), while minimizing their inclusion in the structure in order to minimize their possible electronic leakage in the electrolyte. Structural, morphological, and electrochemical analyses were carried out and results demonstrated a dependence of the overall conductivity on the type of perovskite and the nature of sintering aid, as well as the structural and morphological characteristics of BZY and BZCY. There is a noticeable difference between BZY and BZCY in terms of the propensity to achieve high densification, with the second more prone to do this. On the other hand, BZCY showed a particular tendency to pomote electronic leakages, particularly at high temperatures due to the presence of Ce and exacerbated by reducing conditions. In spite of the 99.2% densification achieved with Cu-doped BZCY prepared according to one of the empolyed methods, the morphology must be improved further for the specimen to gain superior electrical properties.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"93 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2024.145631","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The reduction of operating temperatures of solid oxide electrochemical cells requires the development of novel materials, particularly those with high conductive charge carriers. This scenario presents challenges in developing proton conductive electrolytes and optimizing thermal treatments for their densification. A simple strategy for obtaining dense BaZr0.8Y0.2O3-δ (BZY) and BaZr0.7Ce0.2Y0.1O3-δ (BZCY) ceramics, which represent the most frequently investigated proton conductive ceramics today, is presented in this paper and complies with using a low percentage of nickel or copper (1 wt.%), while minimizing their inclusion in the structure in order to minimize their possible electronic leakage in the electrolyte. Structural, morphological, and electrochemical analyses were carried out and results demonstrated a dependence of the overall conductivity on the type of perovskite and the nature of sintering aid, as well as the structural and morphological characteristics of BZY and BZCY. There is a noticeable difference between BZY and BZCY in terms of the propensity to achieve high densification, with the second more prone to do this. On the other hand, BZCY showed a particular tendency to pomote electronic leakages, particularly at high temperatures due to the presence of Ce and exacerbated by reducing conditions. In spite of the 99.2% densification achieved with Cu-doped BZCY prepared according to one of the empolyed methods, the morphology must be improved further for the specimen to gain superior electrical properties.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信