A new strategy for preparing high strength diffusion-bonded Ni-based superalloy joints at ultra-low temperature via surface nanocrystallization and spark plasma sintering

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tong Wu, Ce Wang, Yuyuan Liu, Qiuguang Zhang, Panpan Lin, Xin Yue, Tiesong Lin, Peng He
{"title":"A new strategy for preparing high strength diffusion-bonded Ni-based superalloy joints at ultra-low temperature via surface nanocrystallization and spark plasma sintering","authors":"Tong Wu, Ce Wang, Yuyuan Liu, Qiuguang Zhang, Panpan Lin, Xin Yue, Tiesong Lin, Peng He","doi":"10.1016/j.jmst.2024.11.050","DOIUrl":null,"url":null,"abstract":"The challenge of low temperature and rapid diffusion bonding of a Ni-based superalloy was hereby addressed by using a Ni nano-coating and a spark plasma sintering (SPS). It successfully produced a Ni-based superalloy joint with 337 MPa shear strength at 500°C for 30 min, which is approximately 400°C lower than the traditional hot pressure diffusion bonding (HPDB) temperature. The microstructure and mechanical properties of the joints were systematically investigated. It is revealed that the pulsed current and ultra-fine grains (19 nm) in the Ni nano-coating could significantly facilitate voids closure. The voids closure mechanisms involved (i) pulsed current strengthened plastic deformation, (ii) pulsed current strengthened surface source diffusion, (iii) pulsed current strengthened bonding interface diffusion, (iv) grain growth dividing the initial large voids into nano-voids, and (v) massive grain boundaries (GBs), lattice defects, and local high-temperature strengthened GBs diffusion. Furthermore, the GBs migration across the interface was investigated, and the results revealed that the GBs migration and fine grains (350 nm) near the bonding interface together increased the joint strength.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"33 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.11.050","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The challenge of low temperature and rapid diffusion bonding of a Ni-based superalloy was hereby addressed by using a Ni nano-coating and a spark plasma sintering (SPS). It successfully produced a Ni-based superalloy joint with 337 MPa shear strength at 500°C for 30 min, which is approximately 400°C lower than the traditional hot pressure diffusion bonding (HPDB) temperature. The microstructure and mechanical properties of the joints were systematically investigated. It is revealed that the pulsed current and ultra-fine grains (19 nm) in the Ni nano-coating could significantly facilitate voids closure. The voids closure mechanisms involved (i) pulsed current strengthened plastic deformation, (ii) pulsed current strengthened surface source diffusion, (iii) pulsed current strengthened bonding interface diffusion, (iv) grain growth dividing the initial large voids into nano-voids, and (v) massive grain boundaries (GBs), lattice defects, and local high-temperature strengthened GBs diffusion. Furthermore, the GBs migration across the interface was investigated, and the results revealed that the GBs migration and fine grains (350 nm) near the bonding interface together increased the joint strength.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信