Broad repression of DNA repair genes in senescent cells identified by integration of transcriptomic data

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yann Frey, Majd Haj, Yael Ziv, Ran Elkon, Yosef Shiloh
{"title":"Broad repression of DNA repair genes in senescent cells identified by integration of transcriptomic data","authors":"Yann Frey, Majd Haj, Yael Ziv, Ran Elkon, Yosef Shiloh","doi":"10.1093/nar/gkae1257","DOIUrl":null,"url":null,"abstract":"Cellular senescence plays a significant role in tissue aging. Senescent cells, which resist apoptosis while remaining metabolically active, generate endogenous DNA-damaging agents, primarily reactive oxygen species. Efficient DNA repair is therefore crucial in these cells, especially when they undergo senescence escape, resuming DNA replication and cellular proliferation. To investigate whether senescent cell transcriptomes reflect adequate DNA repair capacity, we conducted a comprehensive meta-analysis of 60 transcriptomic datasets comparing senescent to proliferating cells. Our analysis revealed a striking downregulation of genes encoding essential components across DNA repair pathways in senescent cells. This includes pathways active in different cell cycle phases such as nucleotide excision repair, base excision repair, nonhomologous end joining and homologous recombination repair of double-strand breaks, mismatch repair and interstrand crosslink repair. The downregulation observed suggests a significant accumulation of DNA lesions. Experimental monitoring of DNA repair readouts in cells that underwent radiation-induced senescence supported this conclusion. This phenomenon was consistent across various senescence triggers and was also observed in primary cell lines from aging individuals. These findings highlight the potential of senescent cells as ‘ticking bombs’ in aging-related diseases and tumors recurring following therapy-induced senescence.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"33 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1257","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cellular senescence plays a significant role in tissue aging. Senescent cells, which resist apoptosis while remaining metabolically active, generate endogenous DNA-damaging agents, primarily reactive oxygen species. Efficient DNA repair is therefore crucial in these cells, especially when they undergo senescence escape, resuming DNA replication and cellular proliferation. To investigate whether senescent cell transcriptomes reflect adequate DNA repair capacity, we conducted a comprehensive meta-analysis of 60 transcriptomic datasets comparing senescent to proliferating cells. Our analysis revealed a striking downregulation of genes encoding essential components across DNA repair pathways in senescent cells. This includes pathways active in different cell cycle phases such as nucleotide excision repair, base excision repair, nonhomologous end joining and homologous recombination repair of double-strand breaks, mismatch repair and interstrand crosslink repair. The downregulation observed suggests a significant accumulation of DNA lesions. Experimental monitoring of DNA repair readouts in cells that underwent radiation-induced senescence supported this conclusion. This phenomenon was consistent across various senescence triggers and was also observed in primary cell lines from aging individuals. These findings highlight the potential of senescent cells as ‘ticking bombs’ in aging-related diseases and tumors recurring following therapy-induced senescence.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信