Greener Synthesis of the Polymer of Intrinsic Microporosity PIM-1 for Gas Separation

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Alisha Ayyaz, Andrew B. Foster, Levente Cseri, Gyorgy Szekely, Peter M. Budd
{"title":"Greener Synthesis of the Polymer of Intrinsic Microporosity PIM-1 for Gas Separation","authors":"Alisha Ayyaz, Andrew B. Foster, Levente Cseri, Gyorgy Szekely, Peter M. Budd","doi":"10.1021/acssuschemeng.4c08475","DOIUrl":null,"url":null,"abstract":"Polymers of intrinsic microporosity (PIMs) are studied as membranes for energy-efficient and environmentally friendly separation technologies, but greener polymerization methods are desirable for further scale up. This work aimed to synthesize the prototypical PIM (PIM-1) via a greener synthetic route by changing the solvent system to methyl-5-(dimethylamino)-2,2-dimethyl-5-oxopentanoate (MDDOP), a structural analogue of the green solvent Rhodiasolv PolarClean. Mass-based green metrics analysis was performed on MDDOP, determining atom economy, complete environmental factor, and total carbon intensity, comparing each to synthetic routes to PolarClean. Green metrics analysis found MDDOP synthesis produced less waste than PolarClean. MDDOP solvent capabilities were exemplified via PIM-1 polymerizations using 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethyl-1,1′-spirobisindane (TTSBI) with either tetrafluoroterephthalonitrile (TFTPN) or tetrachloroterephthalonitrile (TCTPN), varying the temperature (120–160 °C) and reaction duration (50 min–6 h). Recovery of methanol and MDDOP post PIM-1 synthesis reduced solvent waste by 22%. Reactions using TCTPN produced polymers with higher molar masses than those produced using TFTPN. All samples showed varied topology, with evidence of branching and colloidal network. The polymer from the most successful reaction conditions (TCTPN, <i>T</i> = 140 °C, 6 h) was fabricated into thick film membranes and tested with pure gases for CO<sub>2</sub>/CH<sub>4</sub> and CO<sub>2</sub>/N<sub>2</sub> gas pairs, performing comparably with PIM-1 synthesized using conventional solvent systems.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"71 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c08475","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymers of intrinsic microporosity (PIMs) are studied as membranes for energy-efficient and environmentally friendly separation technologies, but greener polymerization methods are desirable for further scale up. This work aimed to synthesize the prototypical PIM (PIM-1) via a greener synthetic route by changing the solvent system to methyl-5-(dimethylamino)-2,2-dimethyl-5-oxopentanoate (MDDOP), a structural analogue of the green solvent Rhodiasolv PolarClean. Mass-based green metrics analysis was performed on MDDOP, determining atom economy, complete environmental factor, and total carbon intensity, comparing each to synthetic routes to PolarClean. Green metrics analysis found MDDOP synthesis produced less waste than PolarClean. MDDOP solvent capabilities were exemplified via PIM-1 polymerizations using 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethyl-1,1′-spirobisindane (TTSBI) with either tetrafluoroterephthalonitrile (TFTPN) or tetrachloroterephthalonitrile (TCTPN), varying the temperature (120–160 °C) and reaction duration (50 min–6 h). Recovery of methanol and MDDOP post PIM-1 synthesis reduced solvent waste by 22%. Reactions using TCTPN produced polymers with higher molar masses than those produced using TFTPN. All samples showed varied topology, with evidence of branching and colloidal network. The polymer from the most successful reaction conditions (TCTPN, T = 140 °C, 6 h) was fabricated into thick film membranes and tested with pure gases for CO2/CH4 and CO2/N2 gas pairs, performing comparably with PIM-1 synthesized using conventional solvent systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信