Synergistically Inducing Ultrafast Ion Diffusion and Reversible Charge Transfer in Lithium Metal Batteries Using Bimetallic Molybdenum–Titanium MXenes

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-01-01 DOI:10.1021/acsnano.4c15493
Mugilan Narayanasamy, Shakir Zaman, Ji Seon Kim, Sungmin Jung, Shabbir Madad Naqvi, Tufail Hassan, Aamir Iqbal, Sang Uck Lee, Chong Min Koo
{"title":"Synergistically Inducing Ultrafast Ion Diffusion and Reversible Charge Transfer in Lithium Metal Batteries Using Bimetallic Molybdenum–Titanium MXenes","authors":"Mugilan Narayanasamy, Shakir Zaman, Ji Seon Kim, Sungmin Jung, Shabbir Madad Naqvi, Tufail Hassan, Aamir Iqbal, Sang Uck Lee, Chong Min Koo","doi":"10.1021/acsnano.4c15493","DOIUrl":null,"url":null,"abstract":"Metal batteries have captured significant attention for high-energy applications, owing to their superior theoretical energy densities. However, their practical viability is impeded by severe dendrite formation and poor cycling stability. To alleviate these issues, a 3D-structured bimetallic-Mo<sub>2</sub>Ti<sub>2</sub>C<sub>3</sub>T<sub><i>x</i></sub> based fiber electrode was fabricated in this study and analyzed experimentally and computationally. The bimetallic Mo–Ti composition of MXenes synergistically achieved low binding and formation energies with lithium. In particular, the minimal lattice mismatch between the deposited Li metal and the Mo<sub>2</sub>Ti<sub>2</sub>C<sub>3</sub>T<sub><i>x</i></sub> MXene anode substrate led to improved Li formation energy with respect to the MXene surface. Moreover, the synergy of the bimetallic Mo–Ti composition of the Mo<sub>2</sub>Ti<sub>2</sub>C<sub>3</sub>T<sub><i>x</i></sub> MXene fiber substrate helped to amplify ion diffusion and reversible charge transfer. Consequently, the bimetallic MXene electrode exhibited an impressive Coulombic efficiency (99.08%) even at a high current density (5 mA cm<sup>–2</sup>) and a fixed cutoff capacity of 1 mA h cm<sup>–2</sup> with prolonged cycle life (650 cycles). This report highlights a promising advancement in addressing the critical challenges facing metal battery operation, thereby offering an approach to improving performance for high-energy applications.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"97 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c15493","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal batteries have captured significant attention for high-energy applications, owing to their superior theoretical energy densities. However, their practical viability is impeded by severe dendrite formation and poor cycling stability. To alleviate these issues, a 3D-structured bimetallic-Mo2Ti2C3Tx based fiber electrode was fabricated in this study and analyzed experimentally and computationally. The bimetallic Mo–Ti composition of MXenes synergistically achieved low binding and formation energies with lithium. In particular, the minimal lattice mismatch between the deposited Li metal and the Mo2Ti2C3Tx MXene anode substrate led to improved Li formation energy with respect to the MXene surface. Moreover, the synergy of the bimetallic Mo–Ti composition of the Mo2Ti2C3Tx MXene fiber substrate helped to amplify ion diffusion and reversible charge transfer. Consequently, the bimetallic MXene electrode exhibited an impressive Coulombic efficiency (99.08%) even at a high current density (5 mA cm–2) and a fixed cutoff capacity of 1 mA h cm–2 with prolonged cycle life (650 cycles). This report highlights a promising advancement in addressing the critical challenges facing metal battery operation, thereby offering an approach to improving performance for high-energy applications.

Abstract Image

钼钛MXenes在锂电池中协同诱导超快离子扩散和可逆电荷转移
金属电池由于其优越的理论能量密度,在高能应用中引起了极大的关注。然而,它们的实际生存能力受到严重的枝晶形成和较差的循环稳定性的阻碍。为了解决这些问题,本研究制作了基于mo2ti2c3tx的3d结构双金属纤维电极,并进行了实验和计算分析。MXenes的双金属Mo-Ti组分与锂协同作用,获得了较低的结合能和形成能。特别是,沉积的锂金属与Mo2Ti2C3Tx MXene阳极衬底之间的晶格失配最小,导致相对于MXene表面的锂形成能提高。此外,Mo2Ti2C3Tx MXene光纤衬底的双金属Mo-Ti组分的协同作用有助于增强离子扩散和可逆电荷转移。因此,即使在高电流密度(5 mA cm-2)和固定截止容量(1 mA h cm-2)下,双金属MXene电极也表现出令人印象深刻的库仑效率(99.08%),并且延长了循环寿命(650次循环)。该报告强调了在解决金属电池运行面临的关键挑战方面取得的有希望的进展,从而为提高高能应用的性能提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信