Hongwen Chen, Hoa T. T. Ha, Nadia Elghobashi-Meinhardt, Nhung A. Le, Philip Schmiege, Long N. Nguyen, Xiaochun Li
{"title":"Molecular basis of Spns1-mediated lysophospholipid transport from the lysosome","authors":"Hongwen Chen, Hoa T. T. Ha, Nadia Elghobashi-Meinhardt, Nhung A. Le, Philip Schmiege, Long N. Nguyen, Xiaochun Li","doi":"10.1073/pnas.2409596121","DOIUrl":null,"url":null,"abstract":"Spns1 mediates the rate-limiting efflux of lysophospholipids from the lysosome to the cytosol. Deficiency of Spns1 is associated with embryonic senescence, as well as liver and skeletal muscle atrophy in animal models. However, the mechanisms by which Spns1 transports lysophospholipid and proton sensing remain unclear. Here, we present a cryogenic electron microscopy structure of human Spns1 in lysophosphatidylcholine (LPC)-bound lumen-facing conformation. Notably, LPC snugly binds within the luminal-open cavity, where the molecular dynamics simulations reveal that LPC presents a propensity to enter between transmembrane-helices (TM) 5 and 8. Structural comparisons and cell-based transport assays uncover several pivotal residues at TM 5/8 that orchestrate the transport cycle, which are unique to Spns1. Furthermore, we identify a five-residue network that is crucial for proton-sensing by Spns1. Transference of these network residues to Spns2, a sphingosine-1-phosphate uniporter, causes the chimeric Spns2 to be low pH dependent. Our results reveal molecular insights into lysosomal LPC transport and the proton-sensing mechanism by Spns1.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"71 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2409596121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Spns1 mediates the rate-limiting efflux of lysophospholipids from the lysosome to the cytosol. Deficiency of Spns1 is associated with embryonic senescence, as well as liver and skeletal muscle atrophy in animal models. However, the mechanisms by which Spns1 transports lysophospholipid and proton sensing remain unclear. Here, we present a cryogenic electron microscopy structure of human Spns1 in lysophosphatidylcholine (LPC)-bound lumen-facing conformation. Notably, LPC snugly binds within the luminal-open cavity, where the molecular dynamics simulations reveal that LPC presents a propensity to enter between transmembrane-helices (TM) 5 and 8. Structural comparisons and cell-based transport assays uncover several pivotal residues at TM 5/8 that orchestrate the transport cycle, which are unique to Spns1. Furthermore, we identify a five-residue network that is crucial for proton-sensing by Spns1. Transference of these network residues to Spns2, a sphingosine-1-phosphate uniporter, causes the chimeric Spns2 to be low pH dependent. Our results reveal molecular insights into lysosomal LPC transport and the proton-sensing mechanism by Spns1.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.