A low pathogenic avian influenza A/Mallard/South Korea/KNU2019-34/2019 (H1N1) virus has the potential to increase the mammalian pathogenicity.

IF 5.5 3区 医学 Q1 Medicine
Jaemoo Kim, Jungho Kim, Suhyeon Heo, Chang-Hun Yeom, Bao Tuan Duong, Haan Woo Sung, Seon-Ju Yeo, Hyun Park, Haryoung Poo, Jihyun Yang
{"title":"A low pathogenic avian influenza A/Mallard/South Korea/KNU2019-34/2019 (H1N1) virus has the potential to increase the mammalian pathogenicity.","authors":"Jaemoo Kim, Jungho Kim, Suhyeon Heo, Chang-Hun Yeom, Bao Tuan Duong, Haan Woo Sung, Seon-Ju Yeo, Hyun Park, Haryoung Poo, Jihyun Yang","doi":"10.1016/j.virs.2024.12.005","DOIUrl":null,"url":null,"abstract":"<p><p>Influenza, a highly contagious respiratory infectious disease caused by an influenza virus, is a threat to public health worldwide. Avian influenza viruses (AIVs) have the potential to cause the next pandemic by crossing the species barrier through mutation of viral genome. Here, we investigated the pathogenicity of AIVs obtained from South Korea and Mongolia during 2018-2019 by measuring viral titers in the lungs and extrapulmonary organs of mouse models. In addition, we assessed the pathogenicity of AIVs in ferret models. Moreover, we compared the ability of viruses to replicate in mammalian cells, as well as the receptor-binding preferences of AIV isolates. Genetic analyses were finally performed to identify the genetic relationships and amino acid substitutions between viral proteins during mammalian adaptation. Of the 24 AIV isolates tested, A/Mallard/South Korea/KNU2019-34/2019 (KNU19-34; H1N1) caused severe bodyweight loss and high mortality in mice. The virus replicated in the lungs, kidneys, and heart. Importantly, KNU19-34-infected ferrets showed high viral loads in both nasal washes and lungs. KNU19-34 replicated rapidly in A549 and bound preferentially to human like α2,6-linked sialic acids rather than to avian-like α2,3-linked sialic acids, similar to the pandemic A/California/04/2009 (H1N1) strain. Gene segments of KNU19-34 were distributed in Egypt and Asia lineages from 2015 to 2018, and the virus had several amino acid substitutions compared to H1N1 AIV isolates that were non-pathogenic in mice. Collectively, the data suggest that KNU19-34 has zoonotic potential and the possibility of new mutations responsible for mammalian adaptation.</p>","PeriodicalId":23654,"journal":{"name":"Virologica Sinica","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.virs.2024.12.005","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Influenza, a highly contagious respiratory infectious disease caused by an influenza virus, is a threat to public health worldwide. Avian influenza viruses (AIVs) have the potential to cause the next pandemic by crossing the species barrier through mutation of viral genome. Here, we investigated the pathogenicity of AIVs obtained from South Korea and Mongolia during 2018-2019 by measuring viral titers in the lungs and extrapulmonary organs of mouse models. In addition, we assessed the pathogenicity of AIVs in ferret models. Moreover, we compared the ability of viruses to replicate in mammalian cells, as well as the receptor-binding preferences of AIV isolates. Genetic analyses were finally performed to identify the genetic relationships and amino acid substitutions between viral proteins during mammalian adaptation. Of the 24 AIV isolates tested, A/Mallard/South Korea/KNU2019-34/2019 (KNU19-34; H1N1) caused severe bodyweight loss and high mortality in mice. The virus replicated in the lungs, kidneys, and heart. Importantly, KNU19-34-infected ferrets showed high viral loads in both nasal washes and lungs. KNU19-34 replicated rapidly in A549 and bound preferentially to human like α2,6-linked sialic acids rather than to avian-like α2,3-linked sialic acids, similar to the pandemic A/California/04/2009 (H1N1) strain. Gene segments of KNU19-34 were distributed in Egypt and Asia lineages from 2015 to 2018, and the virus had several amino acid substitutions compared to H1N1 AIV isolates that were non-pathogenic in mice. Collectively, the data suggest that KNU19-34 has zoonotic potential and the possibility of new mutations responsible for mammalian adaptation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Virologica Sinica
Virologica Sinica Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
7.70
自引率
1.80%
发文量
3149
期刊介绍: Virologica Sinica is an international journal which aims at presenting the cutting-edge research on viruses all over the world. The journal publishes peer-reviewed original research articles, reviews, and letters to the editor, to encompass the latest developments in all branches of virology, including research on animal, plant and microbe viruses. The journal welcomes articles on virus discovery and characterization, viral epidemiology, viral pathogenesis, virus-host interaction, vaccine development, antiviral agents and therapies, and virus related bio-techniques. Virologica Sinica, the official journal of Chinese Society for Microbiology, will serve as a platform for the communication and exchange of academic information and ideas in an international context. Electronic ISSN: 1995-820X; Print ISSN: 1674-0769
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信