{"title":"Application of the 2-archive multi-objective cuckoo search algorithm for structure optimization.","authors":"Ghanshyam G Tejani, Nikunj Mashru, Pinank Patel, Sunil Kumar Sharma, Emre Celik","doi":"10.1038/s41598-024-82918-2","DOIUrl":null,"url":null,"abstract":"<p><p>The study suggests a better multi-objective optimization method called 2-Archive Multi-Objective Cuckoo Search (MOCS2arc). It is then used to improve eight classical truss structures and six ZDT test functions. The optimization aims to minimize both mass and compliance simultaneously. MOCS2arc is an advanced version of the traditional Multi-Objective Cuckoo Search (MOCS) algorithm, enhanced through a dual archive strategy that significantly improves solution diversity and optimization performance. To evaluate the effectiveness of MOCS2arc, we conducted extensive comparisons with several established multi-objective optimization algorithms: MOSCA, MODA, MOWHO, MOMFO, MOMPA, NSGA-II, DEMO, and MOCS. Such a comparison has been made with various performance metrics to compare and benchmark the efficacy of the proposed algorithm. These metrics comprehensively assess the algorithms' abilities to generate diverse and optimal solutions. The statistical results demonstrate the superior performance of MOCS2arc, evidenced by enhanced diversity and optimal solutions. Additionally, Friedman's test & Wilcoxon's test corroborate the finding that MOCS2arc consistently delivers superior optimization results compared to others. The results show that MOCS2arc is a highly effective improved algorithm for multi-objective truss structure optimization, offering significant and promising improvements over existing methods.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"31553"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685762/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-82918-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The study suggests a better multi-objective optimization method called 2-Archive Multi-Objective Cuckoo Search (MOCS2arc). It is then used to improve eight classical truss structures and six ZDT test functions. The optimization aims to minimize both mass and compliance simultaneously. MOCS2arc is an advanced version of the traditional Multi-Objective Cuckoo Search (MOCS) algorithm, enhanced through a dual archive strategy that significantly improves solution diversity and optimization performance. To evaluate the effectiveness of MOCS2arc, we conducted extensive comparisons with several established multi-objective optimization algorithms: MOSCA, MODA, MOWHO, MOMFO, MOMPA, NSGA-II, DEMO, and MOCS. Such a comparison has been made with various performance metrics to compare and benchmark the efficacy of the proposed algorithm. These metrics comprehensively assess the algorithms' abilities to generate diverse and optimal solutions. The statistical results demonstrate the superior performance of MOCS2arc, evidenced by enhanced diversity and optimal solutions. Additionally, Friedman's test & Wilcoxon's test corroborate the finding that MOCS2arc consistently delivers superior optimization results compared to others. The results show that MOCS2arc is a highly effective improved algorithm for multi-objective truss structure optimization, offering significant and promising improvements over existing methods.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.