Sahitya Yarragolla, Torben Hemke, Fares Jalled, Tobias Gergs, Jan Trieschmann, Tolga Arul, Thomas Mussenbrock
{"title":"Identifying and understanding the nonlinear behavior of memristive devices.","authors":"Sahitya Yarragolla, Torben Hemke, Fares Jalled, Tobias Gergs, Jan Trieschmann, Tolga Arul, Thomas Mussenbrock","doi":"10.1038/s41598-024-80568-y","DOIUrl":null,"url":null,"abstract":"<p><p>Nonlinearity is a crucial characteristic for implementing hardware security primitives or neuromorphic computing systems. The main feature of all memristive devices is this nonlinear behavior observed in their current-voltage characteristics. To comprehend the nonlinear behavior, we have to understand the coexistence of resistive, capacitive, and inertia (virtual inductive) effects in these devices. These effects originate from corresponding physical and chemical processes in memristive devices. A physics-inspired compact model is employed to model and simulate interface-type RRAMs such as Au/BiFeO[Formula: see text]/Pt/Ti, Au/Nb[Formula: see text]O[Formula: see text]/Al[Formula: see text]O[Formula: see text]/Nb, while accounting for the modeling of capacitive and inertia effects. The simulated current-voltage characteristics align well with experimental data and accurately capture the non-zero crossing hysteresis generated by capacitive and inductive effects. This study examines the response of two devices to increasing frequencies, revealing a shift in their nonlinear behavior characterized by a reduced hysteresis range Fourier series analysis utilizing a sinusoidal input voltage of varying amplitudes and frequencies indicates harmonics or frequency components that considerably influence the functioning of RRAMs. Moreover, we propose and demonstrate the use of the frequency spectra as one of the fingerprints for memristive devices.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"31633"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686099/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-80568-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Nonlinearity is a crucial characteristic for implementing hardware security primitives or neuromorphic computing systems. The main feature of all memristive devices is this nonlinear behavior observed in their current-voltage characteristics. To comprehend the nonlinear behavior, we have to understand the coexistence of resistive, capacitive, and inertia (virtual inductive) effects in these devices. These effects originate from corresponding physical and chemical processes in memristive devices. A physics-inspired compact model is employed to model and simulate interface-type RRAMs such as Au/BiFeO[Formula: see text]/Pt/Ti, Au/Nb[Formula: see text]O[Formula: see text]/Al[Formula: see text]O[Formula: see text]/Nb, while accounting for the modeling of capacitive and inertia effects. The simulated current-voltage characteristics align well with experimental data and accurately capture the non-zero crossing hysteresis generated by capacitive and inductive effects. This study examines the response of two devices to increasing frequencies, revealing a shift in their nonlinear behavior characterized by a reduced hysteresis range Fourier series analysis utilizing a sinusoidal input voltage of varying amplitudes and frequencies indicates harmonics or frequency components that considerably influence the functioning of RRAMs. Moreover, we propose and demonstrate the use of the frequency spectra as one of the fingerprints for memristive devices.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.