Identifying and understanding the nonlinear behavior of memristive devices.

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Sahitya Yarragolla, Torben Hemke, Fares Jalled, Tobias Gergs, Jan Trieschmann, Tolga Arul, Thomas Mussenbrock
{"title":"Identifying and understanding the nonlinear behavior of memristive devices.","authors":"Sahitya Yarragolla, Torben Hemke, Fares Jalled, Tobias Gergs, Jan Trieschmann, Tolga Arul, Thomas Mussenbrock","doi":"10.1038/s41598-024-80568-y","DOIUrl":null,"url":null,"abstract":"<p><p>Nonlinearity is a crucial characteristic for implementing hardware security primitives or neuromorphic computing systems. The main feature of all memristive devices is this nonlinear behavior observed in their current-voltage characteristics. To comprehend the nonlinear behavior, we have to understand the coexistence of resistive, capacitive, and inertia (virtual inductive) effects in these devices. These effects originate from corresponding physical and chemical processes in memristive devices. A physics-inspired compact model is employed to model and simulate interface-type RRAMs such as Au/BiFeO[Formula: see text]/Pt/Ti, Au/Nb[Formula: see text]O[Formula: see text]/Al[Formula: see text]O[Formula: see text]/Nb, while accounting for the modeling of capacitive and inertia effects. The simulated current-voltage characteristics align well with experimental data and accurately capture the non-zero crossing hysteresis generated by capacitive and inductive effects. This study examines the response of two devices to increasing frequencies, revealing a shift in their nonlinear behavior characterized by a reduced hysteresis range Fourier series analysis utilizing a sinusoidal input voltage of varying amplitudes and frequencies indicates harmonics or frequency components that considerably influence the functioning of RRAMs. Moreover, we propose and demonstrate the use of the frequency spectra as one of the fingerprints for memristive devices.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"31633"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686099/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-80568-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlinearity is a crucial characteristic for implementing hardware security primitives or neuromorphic computing systems. The main feature of all memristive devices is this nonlinear behavior observed in their current-voltage characteristics. To comprehend the nonlinear behavior, we have to understand the coexistence of resistive, capacitive, and inertia (virtual inductive) effects in these devices. These effects originate from corresponding physical and chemical processes in memristive devices. A physics-inspired compact model is employed to model and simulate interface-type RRAMs such as Au/BiFeO[Formula: see text]/Pt/Ti, Au/Nb[Formula: see text]O[Formula: see text]/Al[Formula: see text]O[Formula: see text]/Nb, while accounting for the modeling of capacitive and inertia effects. The simulated current-voltage characteristics align well with experimental data and accurately capture the non-zero crossing hysteresis generated by capacitive and inductive effects. This study examines the response of two devices to increasing frequencies, revealing a shift in their nonlinear behavior characterized by a reduced hysteresis range Fourier series analysis utilizing a sinusoidal input voltage of varying amplitudes and frequencies indicates harmonics or frequency components that considerably influence the functioning of RRAMs. Moreover, we propose and demonstrate the use of the frequency spectra as one of the fingerprints for memristive devices.

识别和理解忆阻器件的非线性行为。
非线性是实现硬件安全原语或神经形态计算系统的一个重要特征。所有忆阻器件的主要特点是在其电流-电压特性中观察到这种非线性行为。为了理解非线性行为,我们必须理解这些器件中电阻、电容和惯性(虚拟电感)效应的共存。这些效应源于忆阻装置中相应的物理和化学过程。在考虑电容效应和惯性效应建模的同时,采用物理启发的紧凑模型对Au/BiFeO[公式:见文本]/Pt/Ti, Au/Nb[公式:见文本]O[公式:见文本]/Al[公式:见文本]O[公式:见文本]/Nb等接口型rram进行建模和模拟。模拟的电流-电压特性与实验数据吻合良好,能准确捕捉到电容和电感效应产生的非零交叉迟滞。本研究考察了两个器件对增加频率的响应,揭示了其非线性行为的转变,其特征是迟滞范围减小,傅立叶级数分析利用不同幅度和频率的正弦输入电压表明谐波或频率成分对rram的功能有很大影响。此外,我们提出并演示了使用频谱作为记忆器件的指纹之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信