{"title":"Manipulating energy migration in nanoparticles toward tunable photochromic upconversion.","authors":"Jinshu Huang, Langping Tu, Haozhang Huang, Haopeng Wei, Qinyuan Zhang, Bo Zhou","doi":"10.1038/s41467-024-55258-y","DOIUrl":null,"url":null,"abstract":"<p><p>Smart control of energy interactions plays a key role in manipulating upconversion dynamics and tuning emission colors for lanthanide-doped materials. However, quantifying the energy flux in particular energy migration in the representative sensitizer-activator coupled upconversion system has remained a challenge. Here we report a conceptual model to examine the energy flux in a single nanoparticle by designing an interfacial energy transfer mediated nanostructure. We show that energy migration indeed occurs simultaneously with energy transfer in a sensitizer-activator system and the competition between them can be quantified by proposing a characteristic ratio parameter. Moreover, this model is also able to realize the color-switchable photochromic upconversion by temporal control of up-transition processes. These findings offer a deep insight into the understanding of upconversion dynamics and provide a versatile approach to manipulating the energy flux in nanostructures with tunable emission colors, showing great promise in applications of logic operation and information security.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"10890"},"PeriodicalIF":14.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686062/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55258-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Smart control of energy interactions plays a key role in manipulating upconversion dynamics and tuning emission colors for lanthanide-doped materials. However, quantifying the energy flux in particular energy migration in the representative sensitizer-activator coupled upconversion system has remained a challenge. Here we report a conceptual model to examine the energy flux in a single nanoparticle by designing an interfacial energy transfer mediated nanostructure. We show that energy migration indeed occurs simultaneously with energy transfer in a sensitizer-activator system and the competition between them can be quantified by proposing a characteristic ratio parameter. Moreover, this model is also able to realize the color-switchable photochromic upconversion by temporal control of up-transition processes. These findings offer a deep insight into the understanding of upconversion dynamics and provide a versatile approach to manipulating the energy flux in nanostructures with tunable emission colors, showing great promise in applications of logic operation and information security.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.