Antioxidant PRDX3 gene therapy protects brain cells and prevents neurodegeneration in an animal model of Parkinson's disease.

IF 2.5 3区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Sheila Adela Villa-Cedillo, Esrom Jared Acosta-Espinoza, Adolfo Soto-Domínguez, Humberto Rodríguez-Rocha, Carlos R Montes-de-Oca-Saucedo, Aracely García-García, María de Jesús Loera-Arias, Cristina Sarahi Ríos-Vazquez, Guillermo Sánchez-Torres, Jesús Valdés, Odila Saucedo-Cárdenas
{"title":"Antioxidant PRDX3 gene therapy protects brain cells and prevents neurodegeneration in an animal model of Parkinson's disease.","authors":"Sheila Adela Villa-Cedillo, Esrom Jared Acosta-Espinoza, Adolfo Soto-Domínguez, Humberto Rodríguez-Rocha, Carlos R Montes-de-Oca-Saucedo, Aracely García-García, María de Jesús Loera-Arias, Cristina Sarahi Ríos-Vazquez, Guillermo Sánchez-Torres, Jesús Valdés, Odila Saucedo-Cárdenas","doi":"10.1016/j.npep.2024.102494","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases, including Parkinson's Disease (PD), are a significant global health challenge with no effective therapies to counteract neurodegeneration. Genetic and environmental factors lead to mitochondrial dysfunction and increased reactive oxygen species (ROS), resulting in oxidative stress. This stress reduces levels of Peroxiredoxin 3 (PRDX3), a key protein for maintaining ROS balance at the mitochondrial level, increasing the substantia nigra's susceptibility to damage. To investigate the protective role of antioxidant gene therapy in a PD model, we overexpressed the PRDX3 enzyme using a cell-penetrating peptide-based delivery system (mRVG9R-PRDX3 complex). The mRVG9R peptide was combined with a green fluorescent protein (GFP) reporter plasmid expressing PRDX3 to create the complex. Overexpression of the PRDX3 gene in neuronal phenotype cells was confirmed in vitro using dopaminergic SH-SY5Y cells. Following successful in vitro expression, the mRVG9R-PRDX3 complex was stereotaxically injected into the striatum of male C57BL/6 mice. The PD model was induced by administering paraquat (PQ) twice a week for 6 weeks. After the final PQ injection, motor and cognitive functions were evaluated, followed by histological analysis. Animals treated with the mRVG9R-PRDX3 complex showed a clear reduction in PQ-induced PD symptomatology and prevented cellular senescence in the substantia nigra's neuronal population. The mRVG9R-PRDX3 gene therapy improved motor and cognitive functions in the PD animal model and demonstrated potential in protecting substantia nigra dopaminergic neurons from PQ-induced death.</p>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"110 ","pages":"102494"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropeptides","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.npep.2024.102494","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Neurodegenerative diseases, including Parkinson's Disease (PD), are a significant global health challenge with no effective therapies to counteract neurodegeneration. Genetic and environmental factors lead to mitochondrial dysfunction and increased reactive oxygen species (ROS), resulting in oxidative stress. This stress reduces levels of Peroxiredoxin 3 (PRDX3), a key protein for maintaining ROS balance at the mitochondrial level, increasing the substantia nigra's susceptibility to damage. To investigate the protective role of antioxidant gene therapy in a PD model, we overexpressed the PRDX3 enzyme using a cell-penetrating peptide-based delivery system (mRVG9R-PRDX3 complex). The mRVG9R peptide was combined with a green fluorescent protein (GFP) reporter plasmid expressing PRDX3 to create the complex. Overexpression of the PRDX3 gene in neuronal phenotype cells was confirmed in vitro using dopaminergic SH-SY5Y cells. Following successful in vitro expression, the mRVG9R-PRDX3 complex was stereotaxically injected into the striatum of male C57BL/6 mice. The PD model was induced by administering paraquat (PQ) twice a week for 6 weeks. After the final PQ injection, motor and cognitive functions were evaluated, followed by histological analysis. Animals treated with the mRVG9R-PRDX3 complex showed a clear reduction in PQ-induced PD symptomatology and prevented cellular senescence in the substantia nigra's neuronal population. The mRVG9R-PRDX3 gene therapy improved motor and cognitive functions in the PD animal model and demonstrated potential in protecting substantia nigra dopaminergic neurons from PQ-induced death.

抗氧化剂 PRDX3 基因疗法在帕金森病动物模型中保护脑细胞并防止神经变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuropeptides
Neuropeptides 医学-内分泌学与代谢
CiteScore
5.40
自引率
6.90%
发文量
55
审稿时长
>12 weeks
期刊介绍: The aim of Neuropeptides is the rapid publication of original research and review articles, dealing with the structure, distribution, actions and functions of peptides in the central and peripheral nervous systems. The explosion of research activity in this field has led to the identification of numerous naturally occurring endogenous peptides which act as neurotransmitters, neuromodulators, or trophic factors, to mediate nervous system functions. Increasing numbers of non-peptide ligands of neuropeptide receptors have been developed, which act as agonists or antagonists in peptidergic systems. The journal provides a unique opportunity of integrating the many disciplines involved in all neuropeptide research. The journal publishes articles on all aspects of the neuropeptide field, with particular emphasis on gene regulation of peptide expression, peptide receptor subtypes, transgenic and knockout mice with mutations in genes for neuropeptides and peptide receptors, neuroanatomy, physiology, behaviour, neurotrophic factors, preclinical drug evaluation, clinical studies, and clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信