Operando real-space imaging of a structural phase transformation in the high-voltage electrode LixNi0.5Mn1.5O4.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yifei Sun, Sunny Hy, Nelson Hua, James Wingert, Ross Harder, Ying Shirley Meng, Oleg Shpyrko, Andrej Singer
{"title":"Operando real-space imaging of a structural phase transformation in the high-voltage electrode Li<sub>x</sub>Ni<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub>.","authors":"Yifei Sun, Sunny Hy, Nelson Hua, James Wingert, Ross Harder, Ying Shirley Meng, Oleg Shpyrko, Andrej Singer","doi":"10.1038/s41467-024-55010-6","DOIUrl":null,"url":null,"abstract":"<p><p>Discontinuous solid-solid phase transformations play a pivotal role in determining the properties of rechargeable battery electrodes. By leveraging operando Bragg Coherent Diffractive Imaging (BCDI), we investigate the discontinuous phase transformation in Li<sub>x</sub>Ni<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> within an operational Li metal coin cell. Throughout Li-intercalation, we directly observe the nucleation and growth of the Li-rich phase within the initially charged Li-poor phase in a 500 nm particle. Supported by the microelasticity model, the operando imaging unveils an evolution from a curved coherent to a planar semi-coherent interface driven by dislocation dynamics. Our data indicates negligible kinetic limitations from interface propagation impacting the transformation kinetics, even at a discharge rate of C/2 (80 mA/g). This study highlights BCDI's capability to decode complex operando diffraction data, offering exciting opportunities to study nanoscale phase transformations with various stimuli.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"10783"},"PeriodicalIF":14.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685944/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55010-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Discontinuous solid-solid phase transformations play a pivotal role in determining the properties of rechargeable battery electrodes. By leveraging operando Bragg Coherent Diffractive Imaging (BCDI), we investigate the discontinuous phase transformation in LixNi0.5Mn1.5O4 within an operational Li metal coin cell. Throughout Li-intercalation, we directly observe the nucleation and growth of the Li-rich phase within the initially charged Li-poor phase in a 500 nm particle. Supported by the microelasticity model, the operando imaging unveils an evolution from a curved coherent to a planar semi-coherent interface driven by dislocation dynamics. Our data indicates negligible kinetic limitations from interface propagation impacting the transformation kinetics, even at a discharge rate of C/2 (80 mA/g). This study highlights BCDI's capability to decode complex operando diffraction data, offering exciting opportunities to study nanoscale phase transformations with various stimuli.

高压电极LixNi0.5Mn1.5O4中结构相变的实景成像。
不连续的固-固相变在决定可充电电池电极的性能方面起着关键作用。利用BCDI (operando Bragg相干衍射成像)技术,研究了锂金属硬币电池中LixNi0.5Mn1.5O4的不连续相变。在插入过程中,我们直接观察到500 nm颗粒中富锂相在初始带电的贫锂相内的成核和生长。在微弹性模型的支持下,operando成像揭示了由位错动力学驱动的从弯曲相干界面到平面半相干界面的演变。我们的数据表明,即使在C/2 (80 mA/g)的放电速率下,界面传播对转化动力学的影响也可以忽略不计。这项研究突出了BCDI解码复杂operando衍射数据的能力,为研究各种刺激下的纳米级相变提供了令人兴奋的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信