{"title":"Evaluating the <i>in vitro</i> activity of cefoperazone-sulbactam against Gram negative pathogens in blood stream infections using automated systems.","authors":"Uksim Qadri, Sofiya Zaffar, Saleem Javaid Wani, Shugufta Roohi, Munazah Aman, Sabah Bhat, Umaya Majid","doi":"10.18502/ijm.v16i6.17245","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>The incidence of multidrug-resistant, Gram-negative organisms, isolated as the etiological agents of infections is ascending. The advent of novel antibiotics poses significant challenges, necessitating the optimization and utilization of extant antimicrobial agents. Cefoperazone, a third-generation cephalosporin and β-lactam antimicrobial, when combined with sulbactam, an irreversible β-lactamase inhibitor, mitigates the vulnerability of cefoperazone to β-lactamase-producing organisms. Nonetheless, regional data on the susceptibility patterns for this pharmacological combination remains scarce. The primary objective of this investigation was to assess the efficacy of the cefoperazone-sulbactam combination against prevalent Gram-negative bacteria isolated from blood cultures.</p><p><strong>Materials and methods: </strong>A total of 700 Gram-negative isolates, comprising <i>Escherichia coli, Klebsiella pneumoniae, Acinetobacter</i> species, and <i>Pseudomonas aeruginosa,</i> were procured using the BacT/Alert 3D system. The identification and susceptibility testing for cefoperazone-sulbactam were performed using the VITEK Compact ID and AST system. Comparative analysis was conducted against other tested antibiotics.</p><p><strong>Results: </strong>The study revealed that cefoperazone-sulbactam exhibited commendable <i>in-vitro</i> activity against Gram-negative pathogens isolated from blood, surpassed only by colistin and tigecycline.</p><p><strong>Conclusion: </strong>Cefoperazone-sulbactam demonstrates robust activity against the most frequently encountered clinical pathogens, suggesting its potential as an efficacious therapeutic agent. The findings underscore the imperative for ongoing surveillance of resistance patterns and trends among commonly used antimicrobials.</p>","PeriodicalId":14633,"journal":{"name":"Iranian Journal of Microbiology","volume":"16 6","pages":"732-736"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682554/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/ijm.v16i6.17245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objectives: The incidence of multidrug-resistant, Gram-negative organisms, isolated as the etiological agents of infections is ascending. The advent of novel antibiotics poses significant challenges, necessitating the optimization and utilization of extant antimicrobial agents. Cefoperazone, a third-generation cephalosporin and β-lactam antimicrobial, when combined with sulbactam, an irreversible β-lactamase inhibitor, mitigates the vulnerability of cefoperazone to β-lactamase-producing organisms. Nonetheless, regional data on the susceptibility patterns for this pharmacological combination remains scarce. The primary objective of this investigation was to assess the efficacy of the cefoperazone-sulbactam combination against prevalent Gram-negative bacteria isolated from blood cultures.
Materials and methods: A total of 700 Gram-negative isolates, comprising Escherichia coli, Klebsiella pneumoniae, Acinetobacter species, and Pseudomonas aeruginosa, were procured using the BacT/Alert 3D system. The identification and susceptibility testing for cefoperazone-sulbactam were performed using the VITEK Compact ID and AST system. Comparative analysis was conducted against other tested antibiotics.
Results: The study revealed that cefoperazone-sulbactam exhibited commendable in-vitro activity against Gram-negative pathogens isolated from blood, surpassed only by colistin and tigecycline.
Conclusion: Cefoperazone-sulbactam demonstrates robust activity against the most frequently encountered clinical pathogens, suggesting its potential as an efficacious therapeutic agent. The findings underscore the imperative for ongoing surveillance of resistance patterns and trends among commonly used antimicrobials.
期刊介绍:
The Iranian Journal of Microbiology (IJM) is an international, multi-disciplinary, peer-reviewed journal that provides rapid publication of the most advanced scientific research in the areas of basic and applied research on bacteria and other micro-organisms, including bacteria, viruses, yeasts, fungi, microalgae, and protozoa concerning the development of tools for diagnosis and disease control, epidemiology, antimicrobial agents, clinical microbiology, immunology, Genetics, Genomics and Molecular Biology. Contributions may be in the form of original research papers, review articles, short communications, case reports, technical reports, and letters to the Editor. Research findings must be novel and the original data must be available for review by the Editors, if necessary. Studies that are preliminary, of weak originality or merely descriptive as well as negative results are not appropriate for the journal. Papers considered for publication must be unpublished work (except in an abstract form) that is not under consideration for publication anywhere else, and all co-authors should have agreed to the submission. Manuscripts should be written in English.