Exploring optimal control strategies in a nonlinear fractional bi-susceptible model for Covid-19 dynamics using Atangana-Baleanu derivative.

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Azhar Iqbal Kashif Butt, Waheed Ahmad, Hafiz Ghulam Rabbani, Muhammad Rafiq, Shehbaz Ahmad, Naeed Ahmad, Saira Malik
{"title":"Exploring optimal control strategies in a nonlinear fractional bi-susceptible model for Covid-19 dynamics using Atangana-Baleanu derivative.","authors":"Azhar Iqbal Kashif Butt, Waheed Ahmad, Hafiz Ghulam Rabbani, Muhammad Rafiq, Shehbaz Ahmad, Naeed Ahmad, Saira Malik","doi":"10.1038/s41598-024-80218-3","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, a nonlinear fractional bi-susceptible [Formula: see text] model is developed to mathematically study the deadly Coronavirus disease (Covid-19), employing the Atangana-Baleanu derivative in Caputo sense (ABC). A more profound comprehension of the system's intricate dynamics using fractional-order derivative is explored as the primary focus of constructing this model. The fundamental properties such as positivity and boundedness, of an epidemic model have been proven, ensuring that the model accurately reflects the realistic behavior of disease spread within a population. The asymptotic stabilities of the dynamical system at its two main equilibrium states are determined by the essential conditions imposed on the threshold parameter. The analytical results acquired are validated and the significance of the ABC fractional derivative is highlighted by employing a recently proposed Toufik-Atangana numerical technique. A quantitative analysis of the model is conducted by adjusting vaccination and hospitalization rates using constant control techniques. It is suggested by numerical experiments that the Covid-19 pandemic elimination can be expedited by adopting both control measures with appropriate awareness. The model parameters with the highest sensitivity are identified by performing a sensitivity analysis. An optimal control problem is formulated, accompanied by the corresponding Pontryagin-type optimality conditions, aiming to ascertain the most efficient time-dependent controls for susceptible and infected individuals. The effectiveness and efficiency of optimally designed control strategies are showcased through numerical simulations conducted before and after the optimization process. These simulations illustrate the effectiveness of these control strategies in mitigating both financial expenses and infection rates. The novelty of the current study is attributed to the application of the structure-preserving Toufik-Atangana numerical scheme, utilized in a backward-in-time manner, to comprehensively analyze the optimally designed model. Overall, the study's merit is found in its comprehensive approach to modeling, analysis, and control of the Covid-19 pandemic, incorporating advanced mathematical techniques and practical implications for disease management.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"31617"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-80218-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a nonlinear fractional bi-susceptible [Formula: see text] model is developed to mathematically study the deadly Coronavirus disease (Covid-19), employing the Atangana-Baleanu derivative in Caputo sense (ABC). A more profound comprehension of the system's intricate dynamics using fractional-order derivative is explored as the primary focus of constructing this model. The fundamental properties such as positivity and boundedness, of an epidemic model have been proven, ensuring that the model accurately reflects the realistic behavior of disease spread within a population. The asymptotic stabilities of the dynamical system at its two main equilibrium states are determined by the essential conditions imposed on the threshold parameter. The analytical results acquired are validated and the significance of the ABC fractional derivative is highlighted by employing a recently proposed Toufik-Atangana numerical technique. A quantitative analysis of the model is conducted by adjusting vaccination and hospitalization rates using constant control techniques. It is suggested by numerical experiments that the Covid-19 pandemic elimination can be expedited by adopting both control measures with appropriate awareness. The model parameters with the highest sensitivity are identified by performing a sensitivity analysis. An optimal control problem is formulated, accompanied by the corresponding Pontryagin-type optimality conditions, aiming to ascertain the most efficient time-dependent controls for susceptible and infected individuals. The effectiveness and efficiency of optimally designed control strategies are showcased through numerical simulations conducted before and after the optimization process. These simulations illustrate the effectiveness of these control strategies in mitigating both financial expenses and infection rates. The novelty of the current study is attributed to the application of the structure-preserving Toufik-Atangana numerical scheme, utilized in a backward-in-time manner, to comprehensively analyze the optimally designed model. Overall, the study's merit is found in its comprehensive approach to modeling, analysis, and control of the Covid-19 pandemic, incorporating advanced mathematical techniques and practical implications for disease management.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信