Trideoxycytidine diphosphate promotes neural stem cell proliferation and neurogenesis in mice.

IF 3.7 3区 医学 Q2 NUTRITION & DIETETICS
Takahiro Ishimoto, Fuyu Hayashi, Yuya Yamamoto, Keisuke Kiriyama, Reiya Yamashita, Naoto Matsumura, Takumi Nishiuchi, Yusuke Masuo, Mica Fujita, Keita Sutoh, Yukio Kato
{"title":"Trideoxycytidine diphosphate promotes neural stem cell proliferation and neurogenesis in mice.","authors":"Takahiro Ishimoto, Fuyu Hayashi, Yuya Yamamoto, Keisuke Kiriyama, Reiya Yamashita, Naoto Matsumura, Takumi Nishiuchi, Yusuke Masuo, Mica Fujita, Keita Sutoh, Yukio Kato","doi":"10.1016/j.tjnut.2024.12.021","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Food-derived nucleic acids exhibit various biological activities and may act as nutrients. Oral ingestion of the nucleic acid fraction (NAF) of salmon milt extract hydrolysates enhances cognitive function in mice although their active ingredients have not yet been identified, and detailed mechanisms of action are unknown.</p><p><strong>Objective: </strong>To identify active ingredients enhancing cognitive function contained in the NAF and its possible underlying mechanism.</p><p><strong>Methods: </strong>Since the NAF is rich in trinucleotides, proliferative effects of all 64 types of trideoxyribonucleotides were examined in primary cultured neural stem cells (pcNSCs). The active trideoxyribonucleotide was administered intrahippocampally (5 μg) in seven-week-old male ICR mice (n = 4-6) or orally (1 mg) three times a week for two weeks in six-week-old male ICR mice (n = 5), followed by evaluating neurogenesis and cognitive function by immunohistochemical analysis and spatial recognition test, respectively. The mechanism of action was examined by proteomic analysis of trideoxyribonucleotide-treated pcNSCs using the software DAVID, followed by western blot analysis in pcNSCs and hippocampus.</p><p><strong>Results: </strong>Among all trideoxyribonucleotides, only trideoxycytidine diphosphate (CCC) significantly promoted NSC proliferation (P < 0.05), whereas exposure to putative metabolites of CCC did not affect the proliferation. Intrahippocampal or oral CCC administration in mice increased doublecortin-positive cells in hippocampus (P < 0.05) and enhanced spatial memory (P < 0.05). Proteomic analysis revealed significant alterations in expression of PI3K-Akt signaling-related proteins, including eEF1A2 (P < 0.05). Intrahippocampal CCC administration significantly increased the Akt phosphorylation (p-Akt/Akt) (P < 0.05), which was abolished with the PI3K-Akt inhibitor, LY294002 (P < 0.05). CCC exposure increased p-Akt/Akt (P < 0.05) in pcNSCs, whereas LY294002 or small interfering RNA for eef1a2 suppressed CCC-induced increase in p-Akt/Akt (P < 0.05) and cell proliferation (P < 0.05).</p><p><strong>Conclusion: </strong>A simple food-derived structural molecule CCC promotes NSC proliferation through eEF1A2/PI3K-Akt signaling pathway, thereby enhancing neurogenesis.</p>","PeriodicalId":16620,"journal":{"name":"Journal of Nutrition","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tjnut.2024.12.021","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Food-derived nucleic acids exhibit various biological activities and may act as nutrients. Oral ingestion of the nucleic acid fraction (NAF) of salmon milt extract hydrolysates enhances cognitive function in mice although their active ingredients have not yet been identified, and detailed mechanisms of action are unknown.

Objective: To identify active ingredients enhancing cognitive function contained in the NAF and its possible underlying mechanism.

Methods: Since the NAF is rich in trinucleotides, proliferative effects of all 64 types of trideoxyribonucleotides were examined in primary cultured neural stem cells (pcNSCs). The active trideoxyribonucleotide was administered intrahippocampally (5 μg) in seven-week-old male ICR mice (n = 4-6) or orally (1 mg) three times a week for two weeks in six-week-old male ICR mice (n = 5), followed by evaluating neurogenesis and cognitive function by immunohistochemical analysis and spatial recognition test, respectively. The mechanism of action was examined by proteomic analysis of trideoxyribonucleotide-treated pcNSCs using the software DAVID, followed by western blot analysis in pcNSCs and hippocampus.

Results: Among all trideoxyribonucleotides, only trideoxycytidine diphosphate (CCC) significantly promoted NSC proliferation (P < 0.05), whereas exposure to putative metabolites of CCC did not affect the proliferation. Intrahippocampal or oral CCC administration in mice increased doublecortin-positive cells in hippocampus (P < 0.05) and enhanced spatial memory (P < 0.05). Proteomic analysis revealed significant alterations in expression of PI3K-Akt signaling-related proteins, including eEF1A2 (P < 0.05). Intrahippocampal CCC administration significantly increased the Akt phosphorylation (p-Akt/Akt) (P < 0.05), which was abolished with the PI3K-Akt inhibitor, LY294002 (P < 0.05). CCC exposure increased p-Akt/Akt (P < 0.05) in pcNSCs, whereas LY294002 or small interfering RNA for eef1a2 suppressed CCC-induced increase in p-Akt/Akt (P < 0.05) and cell proliferation (P < 0.05).

Conclusion: A simple food-derived structural molecule CCC promotes NSC proliferation through eEF1A2/PI3K-Akt signaling pathway, thereby enhancing neurogenesis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nutrition
Journal of Nutrition 医学-营养学
CiteScore
7.60
自引率
4.80%
发文量
260
审稿时长
39 days
期刊介绍: The Journal of Nutrition (JN/J Nutr) publishes peer-reviewed original research papers covering all aspects of experimental nutrition in humans and other animal species; special articles such as reviews and biographies of prominent nutrition scientists; and issues, opinions, and commentaries on controversial issues in nutrition. Supplements are frequently published to provide extended discussion of topics of special interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信