Weverton Gomes da Costa, Massaine Bandeira E Souza, Camila Ferreira Azevedo, Moyses Nascimento, Carolina Vianna Morgante, Jerônimo Constantino Borel, Eder Jorge de Oliveira
{"title":"Optimizing drought tolerance in cassava through genomic selection.","authors":"Weverton Gomes da Costa, Massaine Bandeira E Souza, Camila Ferreira Azevedo, Moyses Nascimento, Carolina Vianna Morgante, Jerônimo Constantino Borel, Eder Jorge de Oliveira","doi":"10.3389/fpls.2024.1483340","DOIUrl":null,"url":null,"abstract":"<p><p>The complexity of selecting for drought tolerance in cassava, influenced by multiple factors, demands innovative approaches to plant selection. This study aimed to identify cassava clones with tolerance to water stress by employing truncated selection and selection based on genomic values for population improvement and genotype evaluation <i>per se</i>. The Best Linear Unbiased Predictions (BLUPs), Genomic Estimated Breeding Values (GEBVs), and Genomic Estimated Genotypic Values (GETGVs) were obtained based on different prediction models via genomic selection. The selection intensity ranged from 10 to 30%. A wide range of BLUPs for agronomic traits indicate desirable genetic variability for initiating genomic selection cycles to improve cassava's drought tolerance. SNP-based heritability (<i>h</i> <sup>2</sup>) and broad-sense heritabilities (<i>H</i> <sup>2</sup>) under water deficit were low magnitude (<0.40) for 8 to 12 agronomic traits evaluated. Genomic predictive abilities were below the levels of phenotypic heritability, varying by trait and prediction model, with the lowest and highest predictive abilities observed for starch content (0.15 - 0.22) and root length (0.34 - 0.36). Some agronomic traits of greater importance, such as fresh root yield (0.29 - 0.31) and shoot yield (0.31 - 0.32), showed good predictive ability, while dry matter content had lower predictive ability (0.16 - 0.22). The G-BLUP and RKHS methods presented higher predictive abilities, suggesting that incorporating kinship effects can be beneficial, especially in challenging environments. The selection differential based on a 15% selection intensity (62 genotypes) was higher for economically significant traits, such as starch content, shoot yield, and fresh root yield, both for population improvement (GEBVs) and for evaluating genotype's performance per (GETGVs). The lower costs of genotyping offer advantages over conventional phenotyping, making genomic selection a promising approach to increasing genetic gains for drought tolerance in cassava and reducing the breeding cycle to at least half the conventional time.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1483340"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683140/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1483340","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The complexity of selecting for drought tolerance in cassava, influenced by multiple factors, demands innovative approaches to plant selection. This study aimed to identify cassava clones with tolerance to water stress by employing truncated selection and selection based on genomic values for population improvement and genotype evaluation per se. The Best Linear Unbiased Predictions (BLUPs), Genomic Estimated Breeding Values (GEBVs), and Genomic Estimated Genotypic Values (GETGVs) were obtained based on different prediction models via genomic selection. The selection intensity ranged from 10 to 30%. A wide range of BLUPs for agronomic traits indicate desirable genetic variability for initiating genomic selection cycles to improve cassava's drought tolerance. SNP-based heritability (h2) and broad-sense heritabilities (H2) under water deficit were low magnitude (<0.40) for 8 to 12 agronomic traits evaluated. Genomic predictive abilities were below the levels of phenotypic heritability, varying by trait and prediction model, with the lowest and highest predictive abilities observed for starch content (0.15 - 0.22) and root length (0.34 - 0.36). Some agronomic traits of greater importance, such as fresh root yield (0.29 - 0.31) and shoot yield (0.31 - 0.32), showed good predictive ability, while dry matter content had lower predictive ability (0.16 - 0.22). The G-BLUP and RKHS methods presented higher predictive abilities, suggesting that incorporating kinship effects can be beneficial, especially in challenging environments. The selection differential based on a 15% selection intensity (62 genotypes) was higher for economically significant traits, such as starch content, shoot yield, and fresh root yield, both for population improvement (GEBVs) and for evaluating genotype's performance per (GETGVs). The lower costs of genotyping offer advantages over conventional phenotyping, making genomic selection a promising approach to increasing genetic gains for drought tolerance in cassava and reducing the breeding cycle to at least half the conventional time.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.