Carson J Neal, Zachery D Zbinden, Michael E Douglas, Marlis R Douglas
{"title":"Reducing DNA extraction costs through factorial design for the DNAdvance Kit.","authors":"Carson J Neal, Zachery D Zbinden, Michael E Douglas, Marlis R Douglas","doi":"10.1186/s13104-024-07063-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Extracting DNA is essential in wildlife genetic studies, and numerous methods are available. However, the process is costly and time-consuming for non-model organisms, including most wildlife species. Therefore, we optimized a cost-efficient protocol to extract DNA from the muscle tissue of White-tailed Deer using the DNAdvance kit (Beckman Coulter), a magnetic-bead-based approach. We devised a 3 × 3 factorial design using combinations of tissue mass (10 mg, 50 mg, or 100 mg) and reaction volume (25%, 33%, and 50% of the manufacturer's recommended volumes). DNA was extracted for N = 81 tissue sub-samples (9 replicates/treatment).</p><p><strong>Results: </strong>Our target yield was 500 ng of genomic DNA per sample, sufficient for population genetic assessments. A combination of 50 mg tissue and 25% reaction volume yielded enough DNA at the lowest cost. The factorial design revealed that varying tissue mass and reagent volume significantly affected extracted DNA yield. Our study demonstrates that sufficient DNA can be extracted at 75% lower costs than the manufacturer's standard protocol. Other researchers can directly use our modified DNAdvance protocol to perform cost-effective DNA extractions.</p>","PeriodicalId":9234,"journal":{"name":"BMC Research Notes","volume":"17 1","pages":"397"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684086/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Research Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13104-024-07063-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Extracting DNA is essential in wildlife genetic studies, and numerous methods are available. However, the process is costly and time-consuming for non-model organisms, including most wildlife species. Therefore, we optimized a cost-efficient protocol to extract DNA from the muscle tissue of White-tailed Deer using the DNAdvance kit (Beckman Coulter), a magnetic-bead-based approach. We devised a 3 × 3 factorial design using combinations of tissue mass (10 mg, 50 mg, or 100 mg) and reaction volume (25%, 33%, and 50% of the manufacturer's recommended volumes). DNA was extracted for N = 81 tissue sub-samples (9 replicates/treatment).
Results: Our target yield was 500 ng of genomic DNA per sample, sufficient for population genetic assessments. A combination of 50 mg tissue and 25% reaction volume yielded enough DNA at the lowest cost. The factorial design revealed that varying tissue mass and reagent volume significantly affected extracted DNA yield. Our study demonstrates that sufficient DNA can be extracted at 75% lower costs than the manufacturer's standard protocol. Other researchers can directly use our modified DNAdvance protocol to perform cost-effective DNA extractions.
BMC Research NotesBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.60
自引率
0.00%
发文量
363
审稿时长
15 weeks
期刊介绍:
BMC Research Notes publishes scientifically valid research outputs that cannot be considered as full research or methodology articles. We support the research community across all scientific and clinical disciplines by providing an open access forum for sharing data and useful information; this includes, but is not limited to, updates to previous work, additions to established methods, short publications, null results, research proposals and data management plans.