{"title":"3-N-Butylphthalide alleviate Aβ-induced cellular senescence through the CDK2-pRB1-Caspase3 axis","authors":"Yuanruhua Tian , Wenke Li , Yongbo Zhang","doi":"10.1016/j.brainres.2024.149435","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-beta (Aβ) and leading to cellular senescence and cognitive deficits. Cellular senescence contributes significantly to the pathogenesis of AD through the senescence-associated secretory phenotype (SASP), exacerbating Aβ deposition. This study investigates the protective effects of 3-N-Butylphthalide (NBP), a compound derived from Apium graveolens Linn (Chinese celery), on Aβ-induced cellular senescence in U87 cells. Using RNA-sequencing and biochemical assays, we demonstrate that NBP ameliorate Aβ oligomer-induced cellular senescence and apoptosis, and regulated the expression of cyclin-dependent kinase inhibitor 2A (CDKN2A) and components of the cyclin-dependent kinase 2 (CDK2)- phosphorylated retinoblastoma 1 (pRB1)-Caspase3 pathway. Moreover, NBP was shown to suppress the expression of SASP-related genes. These findings suggest that NBP rescues U87 cells from Aβ oligomer-induced senescence and apoptosis through modulating the CDK2-pRB1-Caspase3 axis and SASP expression. Our results underscore the potential of NBP as a senostatic agent for AD which have not been reported in previous studies, offering insights into its mechanisms of action and paving the way for future studies on its efficacy in vivo and in clinical settings. Thus, we contribute to growing evidence supporting the use of senolytic and senostatic agents in the treatment of AD.</div></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1849 ","pages":"Article 149435"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006899324006905","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-beta (Aβ) and leading to cellular senescence and cognitive deficits. Cellular senescence contributes significantly to the pathogenesis of AD through the senescence-associated secretory phenotype (SASP), exacerbating Aβ deposition. This study investigates the protective effects of 3-N-Butylphthalide (NBP), a compound derived from Apium graveolens Linn (Chinese celery), on Aβ-induced cellular senescence in U87 cells. Using RNA-sequencing and biochemical assays, we demonstrate that NBP ameliorate Aβ oligomer-induced cellular senescence and apoptosis, and regulated the expression of cyclin-dependent kinase inhibitor 2A (CDKN2A) and components of the cyclin-dependent kinase 2 (CDK2)- phosphorylated retinoblastoma 1 (pRB1)-Caspase3 pathway. Moreover, NBP was shown to suppress the expression of SASP-related genes. These findings suggest that NBP rescues U87 cells from Aβ oligomer-induced senescence and apoptosis through modulating the CDK2-pRB1-Caspase3 axis and SASP expression. Our results underscore the potential of NBP as a senostatic agent for AD which have not been reported in previous studies, offering insights into its mechanisms of action and paving the way for future studies on its efficacy in vivo and in clinical settings. Thus, we contribute to growing evidence supporting the use of senolytic and senostatic agents in the treatment of AD.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.