Yue You, Yuxi Ma, Xianghui Zeng, Yichao Wang, Juan Du, Yijun Qian, Guoliang Yang, Yuyu Su, Weiwei Lei, Shuaifei Zhao, Yan Qing, Yiqiang Wu, Jingliang Li
{"title":"Tailoring Robust 2D Nanochannels by Radical Polymerization for Efficient Molecular Sieving","authors":"Yue You, Yuxi Ma, Xianghui Zeng, Yichao Wang, Juan Du, Yijun Qian, Guoliang Yang, Yuyu Su, Weiwei Lei, Shuaifei Zhao, Yan Qing, Yiqiang Wu, Jingliang Li","doi":"10.1002/advs.202409556","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional (2D) nanochannels have demonstrated outstanding performance for sieving specific molecules or ions, owing to their uniform molecular channel sizes and interlayer physical/chemical properties. However, controllably tuning nanochannel spaces with specific sizes and simultaneously achieving high mechanical strength remain the main challenges. In this work, the inter-sheet gallery d-spacing of graphene oxide (GO) membrane is successfully tailored with high mechanical strength via a general radical-induced polymerization strategy. The introduced amide groups from N-Vinylformamide significantly reinforce the 2D nanochannels within the freestanding membranes, resulting in an ultrahigh tensile strength of up to 105 MPa. The d-spacing of the membrane is controllably tuned within a range of 0.799–1.410 nm, resulting in a variable water permeance of up to 218 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup> (1304% higher than that of the pristine GO membranes). In particular, the tailored membranes demonstrate excellent water permeance stability (140 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>) in a 200-h long-term operation and high selectivity of solutes under harsh conditions, including a wide range of pH from 4.0 to 10.0, up to a loading pressure of 12 bar and an external temperature of 40 °C. This approach comprehensively achieves a balance between sieving performance and mechanical strength, satisfying the requirements for the next-generation molecular sieving membranes.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 8","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202409556","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202409556","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) nanochannels have demonstrated outstanding performance for sieving specific molecules or ions, owing to their uniform molecular channel sizes and interlayer physical/chemical properties. However, controllably tuning nanochannel spaces with specific sizes and simultaneously achieving high mechanical strength remain the main challenges. In this work, the inter-sheet gallery d-spacing of graphene oxide (GO) membrane is successfully tailored with high mechanical strength via a general radical-induced polymerization strategy. The introduced amide groups from N-Vinylformamide significantly reinforce the 2D nanochannels within the freestanding membranes, resulting in an ultrahigh tensile strength of up to 105 MPa. The d-spacing of the membrane is controllably tuned within a range of 0.799–1.410 nm, resulting in a variable water permeance of up to 218 L m−2 h−1 bar−1 (1304% higher than that of the pristine GO membranes). In particular, the tailored membranes demonstrate excellent water permeance stability (140 L m−2 h−1 bar−1) in a 200-h long-term operation and high selectivity of solutes under harsh conditions, including a wide range of pH from 4.0 to 10.0, up to a loading pressure of 12 bar and an external temperature of 40 °C. This approach comprehensively achieves a balance between sieving performance and mechanical strength, satisfying the requirements for the next-generation molecular sieving membranes.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.