Sonia E. Eynard, Fanny Mondet, Benjamin Basso, Olivier Bouchez, Yves Le Conte, Benjamin Dainat, Axel Decourtye, Lucie Genestout, Matthieu Guichard, François Guillaume, Emmanuelle Labarthe, Barbara Locke, Rachid Mahla, Joachim de Miranda, Markus Neuditschko, Florence Phocas, Kamila Canale-Tabet, Alain Vignal, Bertrand Servin
{"title":"Sequence-Based Multi Ancestry Association Study Reveals the Polygenic Architecture of Varroa destructor Resistance in the Honeybee Apis mellifera","authors":"Sonia E. Eynard, Fanny Mondet, Benjamin Basso, Olivier Bouchez, Yves Le Conte, Benjamin Dainat, Axel Decourtye, Lucie Genestout, Matthieu Guichard, François Guillaume, Emmanuelle Labarthe, Barbara Locke, Rachid Mahla, Joachim de Miranda, Markus Neuditschko, Florence Phocas, Kamila Canale-Tabet, Alain Vignal, Bertrand Servin","doi":"10.1111/mec.17637","DOIUrl":null,"url":null,"abstract":"<p>Honeybees, <i>Apis mellifera</i>, have experienced the full impacts of globalisation, including the recent invasion by the parasitic mite <i>Varroa destructor</i>, now one of the main causes of colony losses worldwide. The strong selection pressure it exerts has led some colonies to develop defence strategies conferring some degree of resistance to the parasite. Assuming these traits are partly heritable, selective breeding of naturally resistant bees could be a sustainable strategy for fighting infestations. To characterise the genetic determinism of varroa resistance, we conducted the largest genome wide association study performed to date on whole genome sequencing of more than 1500 colonies on multiple phenotypes linked to varroa resistance of honeybees. To take into account some genetic diversity of honeybees, colonies belonging to different ancestries representing the main honeybee subspecies in Western Europe were included and analysed both as separate populations and combined in a meta-analysis. The results show that varroa resistance is substantially heritable and polygenic: while 60 significant associations were identified, none explain a substantial part of the trait genetic variance. Overall our study highlights that genomic selection for varroa resistance is promising but that it will not be based on managing a few strong effect mutations and rather use approaches that leverage the genome wide diversity of honeybee populations. From a broader perspective, these results point the way towards understanding the genetic adaptation of eusocial insects to parasite load.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 3","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754705/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.17637","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Honeybees, Apis mellifera, have experienced the full impacts of globalisation, including the recent invasion by the parasitic mite Varroa destructor, now one of the main causes of colony losses worldwide. The strong selection pressure it exerts has led some colonies to develop defence strategies conferring some degree of resistance to the parasite. Assuming these traits are partly heritable, selective breeding of naturally resistant bees could be a sustainable strategy for fighting infestations. To characterise the genetic determinism of varroa resistance, we conducted the largest genome wide association study performed to date on whole genome sequencing of more than 1500 colonies on multiple phenotypes linked to varroa resistance of honeybees. To take into account some genetic diversity of honeybees, colonies belonging to different ancestries representing the main honeybee subspecies in Western Europe were included and analysed both as separate populations and combined in a meta-analysis. The results show that varroa resistance is substantially heritable and polygenic: while 60 significant associations were identified, none explain a substantial part of the trait genetic variance. Overall our study highlights that genomic selection for varroa resistance is promising but that it will not be based on managing a few strong effect mutations and rather use approaches that leverage the genome wide diversity of honeybee populations. From a broader perspective, these results point the way towards understanding the genetic adaptation of eusocial insects to parasite load.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms