Aldehyde Dehydrogenase 2 Lactylation Aggravates Mitochondrial Dysfunction by Disrupting PHB2 Mediated Mitophagy in Acute Kidney Injury.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiaying Li, Xiaoxiao Shi, Jiatong Xu, Kaiyue Wang, Fangxing Hou, Xiaodong Luan, Limeng Chen
{"title":"Aldehyde Dehydrogenase 2 Lactylation Aggravates Mitochondrial Dysfunction by Disrupting PHB2 Mediated Mitophagy in Acute Kidney Injury.","authors":"Jiaying Li, Xiaoxiao Shi, Jiatong Xu, Kaiyue Wang, Fangxing Hou, Xiaodong Luan, Limeng Chen","doi":"10.1002/advs.202411943","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial dysfunction is a crucial event in acute kidney injury (AKI), leading to a metabolic shift toward glycolysis and increased lactate production. Lactylation, a posttranslational modification derived from lactate, plays a significant role in various cellular processes, yet its implications in AKI remain underexplored. Here, a marked increase in lactate levels and pan-Kla levels are observed in kidney tissue from AKI patients and mice, with pronounced lactylation activity in injured proximal tubular cells identified by single-cell RNA sequencing. The lactylation of aldehyde dehydrogenase 2 (ALDH2) is identified at lysine 52 (K52la), revealing that ALDH2 lactylation exacerbates tubular injury and mitochondrial dysfunction. Conversely, the ALDH2 K52R mutation alleviates these injuries in HK-2 cells and adeno-associated virus-infected kidney tissues in mice. Furthermore, ALDH2 lactylation can be modulated by upregulating SIRT3 in vivo and in vitro, which reduces ALDH2 lactylation, mitigating tubular injury and mitochondrial dysfunction. Mechanistically, immunoprecipitation-mass spectrometry analysis demonstrates an interaction between ALDH2 and prohibitin 2 (PHB2), a crucial mitophagy receptor. ALDH2 lactylation promotes the ubiquitination-proteasomal degradation of PHB2 to inhibit mitophagy and worsen mitochondrial dysfunction. These findings highlight the critical role of endogenous lactate in AKI and propose ALDH2 lactylation as a potential therapeutic target.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2411943"},"PeriodicalIF":14.3000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202411943","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial dysfunction is a crucial event in acute kidney injury (AKI), leading to a metabolic shift toward glycolysis and increased lactate production. Lactylation, a posttranslational modification derived from lactate, plays a significant role in various cellular processes, yet its implications in AKI remain underexplored. Here, a marked increase in lactate levels and pan-Kla levels are observed in kidney tissue from AKI patients and mice, with pronounced lactylation activity in injured proximal tubular cells identified by single-cell RNA sequencing. The lactylation of aldehyde dehydrogenase 2 (ALDH2) is identified at lysine 52 (K52la), revealing that ALDH2 lactylation exacerbates tubular injury and mitochondrial dysfunction. Conversely, the ALDH2 K52R mutation alleviates these injuries in HK-2 cells and adeno-associated virus-infected kidney tissues in mice. Furthermore, ALDH2 lactylation can be modulated by upregulating SIRT3 in vivo and in vitro, which reduces ALDH2 lactylation, mitigating tubular injury and mitochondrial dysfunction. Mechanistically, immunoprecipitation-mass spectrometry analysis demonstrates an interaction between ALDH2 and prohibitin 2 (PHB2), a crucial mitophagy receptor. ALDH2 lactylation promotes the ubiquitination-proteasomal degradation of PHB2 to inhibit mitophagy and worsen mitochondrial dysfunction. These findings highlight the critical role of endogenous lactate in AKI and propose ALDH2 lactylation as a potential therapeutic target.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信