Evaluation of the interface of metallic-coated biodegradable polymeric stents with prokaryotic and eukaryotic cells.

IF 18 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Bioactive Materials Pub Date : 2024-12-09 eCollection Date: 2025-04-01 DOI:10.1016/j.bioactmat.2024.12.003
Ana M Sousa, Rita Branco, Paula V Morais, Manuel F Pereira, Ana M Amaro, Ana P Piedade
{"title":"Evaluation of the interface of metallic-coated biodegradable polymeric stents with prokaryotic and eukaryotic cells.","authors":"Ana M Sousa, Rita Branco, Paula V Morais, Manuel F Pereira, Ana M Amaro, Ana P Piedade","doi":"10.1016/j.bioactmat.2024.12.003","DOIUrl":null,"url":null,"abstract":"<p><p>Polymeric coronary stents, like the ABSORB™, are commonly used to treat atherosclerosis due to their bioresorbable and cell-compatible polymer structure. However, they face challenges such as high strut thickness, high elastic recoil, and lack of radiopacity. This study aims to address these limitations by modifying degradable stents produced by additive manufacturing with poly(lactic acid) (PLA) and poly(ε-caprolactone) (PCL) with degradable metallic coatings, specifically zinc (Zn) and magnesium (Mg), deposited via radiofrequency (rf) magnetron sputtering. The characterisation included the evaluation of the degradation of the coatings, antibacterial, anti-thrombogenicity, radiopacity, and mechanical properties. The results showed that the metallic coatings inhibited bacterial growth, though Mg exhibited a high degradation rate. Thrombogenicity studies showed that Zn-coated stents had anticoagulant properties, while Mg-coated and controls were thrombogenic. Zn coatings significantly improved radiopacity, enhancing contrast by 43 %. Mechanical testing revealed that metallic coatings reduced yield strength and, thus, diminished elastic recoil after stent expansion. Zn-coated stents improved cyclic compression resistance by 270 % for PCL stents, with PLA-based stents showing smaller improvements. The coatings also enhanced crush resistance, particularly for Zn-coated PCL stents. Overall, Zn-coated polymers have emerged as the premier prototype due to their superior biological and mechanical performance, appropriate degradation during the stent life, and ability to provide the appropriate radiopacity to medical devices.</p>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"46 ","pages":"55-81"},"PeriodicalIF":18.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683264/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.bioactmat.2024.12.003","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polymeric coronary stents, like the ABSORB™, are commonly used to treat atherosclerosis due to their bioresorbable and cell-compatible polymer structure. However, they face challenges such as high strut thickness, high elastic recoil, and lack of radiopacity. This study aims to address these limitations by modifying degradable stents produced by additive manufacturing with poly(lactic acid) (PLA) and poly(ε-caprolactone) (PCL) with degradable metallic coatings, specifically zinc (Zn) and magnesium (Mg), deposited via radiofrequency (rf) magnetron sputtering. The characterisation included the evaluation of the degradation of the coatings, antibacterial, anti-thrombogenicity, radiopacity, and mechanical properties. The results showed that the metallic coatings inhibited bacterial growth, though Mg exhibited a high degradation rate. Thrombogenicity studies showed that Zn-coated stents had anticoagulant properties, while Mg-coated and controls were thrombogenic. Zn coatings significantly improved radiopacity, enhancing contrast by 43 %. Mechanical testing revealed that metallic coatings reduced yield strength and, thus, diminished elastic recoil after stent expansion. Zn-coated stents improved cyclic compression resistance by 270 % for PCL stents, with PLA-based stents showing smaller improvements. The coatings also enhanced crush resistance, particularly for Zn-coated PCL stents. Overall, Zn-coated polymers have emerged as the premier prototype due to their superior biological and mechanical performance, appropriate degradation during the stent life, and ability to provide the appropriate radiopacity to medical devices.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioactive Materials
Bioactive Materials Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍: Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms. The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms. The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials: Bioactive metals and alloys Bioactive inorganics: ceramics, glasses, and carbon-based materials Bioactive polymers and gels Bioactive materials derived from natural sources Bioactive composites These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信