Automated differentiation of wide QRS complex tachycardia using QRS complex polarity

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Adam M. May, Bhavesh B. Katbamna, Preet A. Shaikh, Sarah LoCoco, Elena Deych, Ruiwen Zhou, Lei Liu, Krasimira M. Mikhova, Rugheed Ghadban, Phillip S. Cuculich, Daniel H. Cooper, Thomas M. Maddox, Peter A. Noseworthy, Anthony Kashou
{"title":"Automated differentiation of wide QRS complex tachycardia using QRS complex polarity","authors":"Adam M. May, Bhavesh B. Katbamna, Preet A. Shaikh, Sarah LoCoco, Elena Deych, Ruiwen Zhou, Lei Liu, Krasimira M. Mikhova, Rugheed Ghadban, Phillip S. Cuculich, Daniel H. Cooper, Thomas M. Maddox, Peter A. Noseworthy, Anthony Kashou","doi":"10.1038/s43856-024-00725-2","DOIUrl":null,"url":null,"abstract":"Wide QRS complex tachycardia (WCT) differentiation into ventricular tachycardia (VT) and supraventricular wide complex tachycardia (SWCT) remains challenging despite numerous 12-lead electrocardiogram (ECG) criteria and algorithms. Automated solutions leveraging computerized ECG interpretation (CEI) measurements and engineered features offer practical ways to improve diagnostic accuracy. We propose automated algorithms based on (i) WCT QRS polarity direction (WCT Polarity Code [WCT-PC]) and (ii) QRS polarity shifts between WCT and baseline ECGs (QRS Polarity Shift [QRS-PS]). In a three-part study, we derive and validate machine learning (ML) models—logistic regression (LR), artificial neural network (ANN), Random Forests (RF), support vector machine (SVM), and ensemble learning (EL)—using engineered (WCT-PC and QRS-PS) and previously established WCT differentiation features. Part 1 uses WCT ECG measurements alone, Part 2 pairs WCT and baseline ECG features, and Part 3 combines all features used in Parts 1 and 2 Among 235 WCT patients (158 SWCT, 77 VT), 103 had gold standard diagnoses. Part 1 models achieved AUCs of 0.86–0.88 using WCT ECG features alone. Part 2 improved accuracy with paired ECGs (AUCs 0.90–0.93). Part 3 showed variable results (AUC 0.72–0.93), with RF and SVM performing best. Incorporating engineered parameters related to QRS polarity direction and shifts can yield effective WCT differentiation, presenting a promising approach for automated CEI algorithms. Wide QRS complex tachycardias (WCTs) are abnormal, rapid heart rhythms that can be dangerous. Differentiating between the two main types, which are ventricular tachycardia (VT) and supraventricular wide complex tachycardia (SWCT), is critical for treatment decisions but remains challenging. An electrocardiogram (ECG) measures the electrical activity of the heart. We used automated ECG measurements to develop computational methods that enhance the accuracy of ECG interpretation. The computational methods, particularly those that analyzed paired ECG recordings, were able to differentiate WCTs with high accuracy. This method could help doctors diagnose heart conditions more reliably, resulting in faster and more precise treatments for patients with abnormal heart rhythms. May et al. propose machine learning algorithms that leverage QRS polarity direction and shifts to differentiate wide QRS complex tachycardias. Strong diagnostic accuracy is demonstrated, particularly when integrating features from both wide QRS tachycardia and baseline electrocardiograms.","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":" ","pages":"1-12"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43856-024-00725-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43856-024-00725-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Wide QRS complex tachycardia (WCT) differentiation into ventricular tachycardia (VT) and supraventricular wide complex tachycardia (SWCT) remains challenging despite numerous 12-lead electrocardiogram (ECG) criteria and algorithms. Automated solutions leveraging computerized ECG interpretation (CEI) measurements and engineered features offer practical ways to improve diagnostic accuracy. We propose automated algorithms based on (i) WCT QRS polarity direction (WCT Polarity Code [WCT-PC]) and (ii) QRS polarity shifts between WCT and baseline ECGs (QRS Polarity Shift [QRS-PS]). In a three-part study, we derive and validate machine learning (ML) models—logistic regression (LR), artificial neural network (ANN), Random Forests (RF), support vector machine (SVM), and ensemble learning (EL)—using engineered (WCT-PC and QRS-PS) and previously established WCT differentiation features. Part 1 uses WCT ECG measurements alone, Part 2 pairs WCT and baseline ECG features, and Part 3 combines all features used in Parts 1 and 2 Among 235 WCT patients (158 SWCT, 77 VT), 103 had gold standard diagnoses. Part 1 models achieved AUCs of 0.86–0.88 using WCT ECG features alone. Part 2 improved accuracy with paired ECGs (AUCs 0.90–0.93). Part 3 showed variable results (AUC 0.72–0.93), with RF and SVM performing best. Incorporating engineered parameters related to QRS polarity direction and shifts can yield effective WCT differentiation, presenting a promising approach for automated CEI algorithms. Wide QRS complex tachycardias (WCTs) are abnormal, rapid heart rhythms that can be dangerous. Differentiating between the two main types, which are ventricular tachycardia (VT) and supraventricular wide complex tachycardia (SWCT), is critical for treatment decisions but remains challenging. An electrocardiogram (ECG) measures the electrical activity of the heart. We used automated ECG measurements to develop computational methods that enhance the accuracy of ECG interpretation. The computational methods, particularly those that analyzed paired ECG recordings, were able to differentiate WCTs with high accuracy. This method could help doctors diagnose heart conditions more reliably, resulting in faster and more precise treatments for patients with abnormal heart rhythms. May et al. propose machine learning algorithms that leverage QRS polarity direction and shifts to differentiate wide QRS complex tachycardias. Strong diagnostic accuracy is demonstrated, particularly when integrating features from both wide QRS tachycardia and baseline electrocardiograms.

Abstract Image

利用QRS复极性自动鉴别宽QRS复极性心动过速
尽管有许多12导联心电图(ECG)标准和算法,宽QRS复合心动过速(WCT)分化为室性心动过速(VT)和室上宽复合心动过速(SWCT)仍然具有挑战性。利用计算机心电解释(CEI)测量和工程特性的自动化解决方案提供了提高诊断准确性的实用方法。我们提出了基于(i) WCT QRS极性方向(WCT极性代码[WCT- pc])和(ii) WCT和基线ecg之间的QRS极性转移(QRS极性转移[QRS- ps])的自动算法。在一项由三部分组成的研究中,我们推导并验证了机器学习(ML)模型-逻辑回归(LR)、人工神经网络(ANN)、随机森林(RF)、支持向量机(SVM)和集成学习(EL) -使用工程(WCT- pc和QRS-PS)和先前建立的WCT分化特征。第一部分单独使用WCT心电图测量,第二部分使用WCT和基线心电图特征,第三部分将第一部分和第二部分使用的所有特征结合起来。在235例WCT患者中(158例SWCT, 77例VT), 103例具有金标准诊断。第一部分模型仅使用WCT ECG特征实现了0.86-0.88的auc。第2部分提高了配对心电图的准确性(auc为0.90-0.93)。第3部分给出了变量结果(AUC为0.72-0.93),其中RF和SVM表现最好。结合与QRS极性方向和移位相关的工程参数可以产生有效的WCT区分,为自动化CEI算法提供了一种有前途的方法。宽QRS复杂心动过速(wct)是一种异常、快速的心律,可能是危险的。区分室性心动过速(VT)和室上宽复合心动过速(SWCT)这两种主要类型对于治疗决策至关重要,但仍然具有挑战性。心电图(ECG)测量心脏的电活动。我们使用自动ECG测量来开发提高ECG解释准确性的计算方法。计算方法,特别是那些分析配对心电图记录的方法,能够以高精度区分wct。这种方法可以帮助医生更可靠地诊断心脏病,从而更快、更精确地治疗心律异常的患者。May等人提出了利用QRS极性方向和移位来区分宽QRS复杂心动过速的机器学习算法。很强的诊断准确性被证明,特别是当结合宽QRS心动过速和基线心电图的特征时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信