Sian E. Ford, Greg F. Slater, Katja Engel, Oliver Warr, Garnet S. Lollar, Allyson Brady, Josh D. Neufeld, Barbara Sherwood Lollar
{"title":"Deep terrestrial indigenous microbial community dominated by Candidatus Frackibacter","authors":"Sian E. Ford, Greg F. Slater, Katja Engel, Oliver Warr, Garnet S. Lollar, Allyson Brady, Josh D. Neufeld, Barbara Sherwood Lollar","doi":"10.1038/s43247-024-01966-8","DOIUrl":null,"url":null,"abstract":"Characterizing deep subsurface microbial communities informs our understanding of Earth’s biogeochemistry as well as the search for life beyond the Earth. Here we characterized microbial communities within the Kidd Creek Observatory subsurface fracture water system with mean residence times of hundreds of millions to over one billion years. 16S rRNA analysis revealed that biosamplers well isolated from the mine environment were dominated by a putatively anaerobic and halophilic bacterial species from the Halobacteroidaceae family, Candidatus Frackibacter. Contrastingly, biosamplers and biofilms exposed to the mine environment contained aerobic Sphingomonas taxa. δ13C values of phospholipid fatty acids and putative functional predictions derived from 16S rRNA gene profiles, imply Candidatus Frackibacter may use carbon derived from ancient carbon-rich layers common in these systems. These results indicate that Candidatus Frackibacter is not unique to hydraulically fracked sedimentary basins but rather may be indigenous to a wide range of deep, saline groundwaters hosted in carbon-rich rocks. Borehole fluids retrieved from the 2.4 km deep Kidd Creek Subsurface Observatory in Canada contain an indigenous microbial community dominated by Candidatus Frackibacter and represents an uncontaminated sample of the deep subsurface microbiome.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-15"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01966-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01966-8","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Characterizing deep subsurface microbial communities informs our understanding of Earth’s biogeochemistry as well as the search for life beyond the Earth. Here we characterized microbial communities within the Kidd Creek Observatory subsurface fracture water system with mean residence times of hundreds of millions to over one billion years. 16S rRNA analysis revealed that biosamplers well isolated from the mine environment were dominated by a putatively anaerobic and halophilic bacterial species from the Halobacteroidaceae family, Candidatus Frackibacter. Contrastingly, biosamplers and biofilms exposed to the mine environment contained aerobic Sphingomonas taxa. δ13C values of phospholipid fatty acids and putative functional predictions derived from 16S rRNA gene profiles, imply Candidatus Frackibacter may use carbon derived from ancient carbon-rich layers common in these systems. These results indicate that Candidatus Frackibacter is not unique to hydraulically fracked sedimentary basins but rather may be indigenous to a wide range of deep, saline groundwaters hosted in carbon-rich rocks. Borehole fluids retrieved from the 2.4 km deep Kidd Creek Subsurface Observatory in Canada contain an indigenous microbial community dominated by Candidatus Frackibacter and represents an uncontaminated sample of the deep subsurface microbiome.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.