Land-to-sea indicators of the Zanclean megaflood

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Aaron Micallef, Giovanni Barreca, Christian Hübscher, Angelo Camerlenghi, Paul Carling, Jose Maria Abril Hernandez, Raúl Periáñez, Daniel Garcia-Castellanos, Jonathan Ford, Benedikt Haimerl, Matthias Hartge, Jonas Preine, Antonio Caruso
{"title":"Land-to-sea indicators of the Zanclean megaflood","authors":"Aaron Micallef, Giovanni Barreca, Christian Hübscher, Angelo Camerlenghi, Paul Carling, Jose Maria Abril Hernandez, Raúl Periáñez, Daniel Garcia-Castellanos, Jonathan Ford, Benedikt Haimerl, Matthias Hartge, Jonas Preine, Antonio Caruso","doi":"10.1038/s43247-024-01972-w","DOIUrl":null,"url":null,"abstract":"One debated scenario for the termination of the Messinian salinity crisis 5.33 million years ago is cataclysmic refilling of the Mediterranean Sea through the Zanclean megaflood. Here we present a clear line of onshore-to-offshore evidence for this megaflood spilling over a shallow-water marine corridor in south-east Sicily into the nearby subaqueous Noto Canyon: (i) >300 asymmetric and streamlined erosional ridges aligned with the megaflood direction, (ii) poorly-sorted breccia deposited between the Messinian and Lower Zanclean Trubi Formations, (iii) soft-sediment deformation structures and clastic injections in the breccia and underlying units, and (iv) a 20 kilometre wide erosional shelf channel connecting the ridges with Noto Canyon. Numerical modelling results support the modulation of flow velocity and direction by the excavation of the channel and Noto Canyon. Our findings demonstrate that the Messinian salinity crisis was terminated through a cataclysmic flood, which implies pronounced Mediterranean sea-level drawdown prior to the flooding. The Zanclean megaflood poured water from the western to the eastern Mediterranean basin through a shallow marine corridor in south-eastern Sicily, ending the isolation of the Mediterranean Sea from the global oceans about 5.3 million years ago, according to onshore-offshore geological data from southern Sicily and numerical modelling.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-11"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01972-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01972-w","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

One debated scenario for the termination of the Messinian salinity crisis 5.33 million years ago is cataclysmic refilling of the Mediterranean Sea through the Zanclean megaflood. Here we present a clear line of onshore-to-offshore evidence for this megaflood spilling over a shallow-water marine corridor in south-east Sicily into the nearby subaqueous Noto Canyon: (i) >300 asymmetric and streamlined erosional ridges aligned with the megaflood direction, (ii) poorly-sorted breccia deposited between the Messinian and Lower Zanclean Trubi Formations, (iii) soft-sediment deformation structures and clastic injections in the breccia and underlying units, and (iv) a 20 kilometre wide erosional shelf channel connecting the ridges with Noto Canyon. Numerical modelling results support the modulation of flow velocity and direction by the excavation of the channel and Noto Canyon. Our findings demonstrate that the Messinian salinity crisis was terminated through a cataclysmic flood, which implies pronounced Mediterranean sea-level drawdown prior to the flooding. The Zanclean megaflood poured water from the western to the eastern Mediterranean basin through a shallow marine corridor in south-eastern Sicily, ending the isolation of the Mediterranean Sea from the global oceans about 5.3 million years ago, according to onshore-offshore geological data from southern Sicily and numerical modelling.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信