An electrochemiluminescence biosensor based on silver-cysteine nanorod as an emitter and AgNP-decorated FeMoOν as a signal amplifier for sensitive detection of heart-type fatty acid binding protein

IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Lingling Zheng, Jing Li, Shenglan Hu, Lixin Xu, Yusheng Wu, Biyang Deng
{"title":"An electrochemiluminescence biosensor based on silver-cysteine nanorod as an emitter and AgNP-decorated FeMoOν as a signal amplifier for sensitive detection of heart-type fatty acid binding protein","authors":"Lingling Zheng,&nbsp;Jing Li,&nbsp;Shenglan Hu,&nbsp;Lixin Xu,&nbsp;Yusheng Wu,&nbsp;Biyang Deng","doi":"10.1007/s00604-024-06923-y","DOIUrl":null,"url":null,"abstract":"<div><p>An electrochemiluminescence (ECL) immunosensor was developed for the highly sensitive and specific detection of heart-type fatty acid binding protein (H-FABP) and the rapid diagnosis of acute myocardial infarction (AMI). H-FABP is a biomarker that is highly specific to cardiac tissue and is associated with a range of cardiac diseases. Following myocardial injury, the rate of increase in H-FABP levels is greater than that observed for myoglobin and troponin. Therefore, the measurement of H-FABP is crucial for the early exclusion of AMI. Silver-cysteine nanorod (AgCysNR), which served as the ECL emitter, was produced with a one-step, green, simple, template-free aqueous phase method. The surfaces of AgCysNR displayed many amino and carboxyl groups that were connected to a large number of a secondary H-FABP-specific antibody. Ferrum-doped molybdenum oxide (FeMoO<sub>ν</sub>), with a large specific surface area, was richly decorated with silver nanoparticle (AgNP), which increased the interfacial electron transfer rate of FeMoO<sub>ν</sub>. The AgNP was used as a co-reaction accelerator to promote persulfate to produce more sulfate anion radical and then enhance the ECL intensity of AgCysNR. The linear range of the ECL immunosensor was 10 fg/mL to 100 ng/mL, and the detection limit was 2.3 fg/mL (signal/noise = 3). The sensor was determined to be stable, repeatable, and reproducible, and the method achieved recoveries of 101.0 to 102.6% with relative standard deviations of 1.4 to 2.0%. This immunosensor represents a promising tool for the early diagnosis of AMI.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06923-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

An electrochemiluminescence (ECL) immunosensor was developed for the highly sensitive and specific detection of heart-type fatty acid binding protein (H-FABP) and the rapid diagnosis of acute myocardial infarction (AMI). H-FABP is a biomarker that is highly specific to cardiac tissue and is associated with a range of cardiac diseases. Following myocardial injury, the rate of increase in H-FABP levels is greater than that observed for myoglobin and troponin. Therefore, the measurement of H-FABP is crucial for the early exclusion of AMI. Silver-cysteine nanorod (AgCysNR), which served as the ECL emitter, was produced with a one-step, green, simple, template-free aqueous phase method. The surfaces of AgCysNR displayed many amino and carboxyl groups that were connected to a large number of a secondary H-FABP-specific antibody. Ferrum-doped molybdenum oxide (FeMoOν), with a large specific surface area, was richly decorated with silver nanoparticle (AgNP), which increased the interfacial electron transfer rate of FeMoOν. The AgNP was used as a co-reaction accelerator to promote persulfate to produce more sulfate anion radical and then enhance the ECL intensity of AgCysNR. The linear range of the ECL immunosensor was 10 fg/mL to 100 ng/mL, and the detection limit was 2.3 fg/mL (signal/noise = 3). The sensor was determined to be stable, repeatable, and reproducible, and the method achieved recoveries of 101.0 to 102.6% with relative standard deviations of 1.4 to 2.0%. This immunosensor represents a promising tool for the early diagnosis of AMI.

Graphical abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microchimica Acta
Microchimica Acta 化学-分析化学
CiteScore
9.80
自引率
5.30%
发文量
410
审稿时长
2.7 months
期刊介绍: As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信