Xiaoda Liu, Jing Yang, Liya Yi, Donghu Li, Qian Wang, Huayun Du, Lifeng Hou, Yinghui Wei
{"title":"Multi-objective optimization of fracturing ball strength and corrosion rate with genetic algorithms and interpretable machine learning","authors":"Xiaoda Liu, Jing Yang, Liya Yi, Donghu Li, Qian Wang, Huayun Du, Lifeng Hou, Yinghui Wei","doi":"10.1007/s42114-024-01199-5","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional alloy design typically relies on trial and error and experience. Machine learning can significantly accelerate the discovery and design process of new materials. However, as the number of elements in the alloy and target performance metrics increase, alloy optimization becomes more challenging. To address this, this paper proposes a machine learning–based multi-objective optimization method for magnesium alloy fracturing balls. The machine learning model trained on the magnesium alloy corrosion and ultimate compressive strength database achieves an accuracy of 0.98 on the training set and 0.93 on the test set. By using a multi-objective genetic algorithm to optimize the element ratios of the magnesium alloy, Mg-6.4Al-3.4Zn-4.6Cu was obtained, with a corrosion rate of 538 mm/year and an ultimate compressive strength of 369 MPa. This provides a new method for the efficient, rapid, and precise preparation of novel degradable magnesium alloys.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01199-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional alloy design typically relies on trial and error and experience. Machine learning can significantly accelerate the discovery and design process of new materials. However, as the number of elements in the alloy and target performance metrics increase, alloy optimization becomes more challenging. To address this, this paper proposes a machine learning–based multi-objective optimization method for magnesium alloy fracturing balls. The machine learning model trained on the magnesium alloy corrosion and ultimate compressive strength database achieves an accuracy of 0.98 on the training set and 0.93 on the test set. By using a multi-objective genetic algorithm to optimize the element ratios of the magnesium alloy, Mg-6.4Al-3.4Zn-4.6Cu was obtained, with a corrosion rate of 538 mm/year and an ultimate compressive strength of 369 MPa. This provides a new method for the efficient, rapid, and precise preparation of novel degradable magnesium alloys.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.