{"title":"Crystallization Regulation for Stable Blade-Coated Flexible Perovskite Solar Modules","authors":"Hua Zhong;Fei Zhang","doi":"10.23919/IEN.2024.0024","DOIUrl":null,"url":null,"abstract":"Effective perovskite crystallization control strategies for flexible substrates with scalable processing techniques have rarely been reported and remain an important challenge. In this study, 3-mercaptobenzoic acid (3-MBA) was introduced into the perovskite precursor to modulate the crystallization dynamics, facilitating rapid nucleation while slowing down crystal growth. This approach enabled the formation of uniform, dense large-area perovskite films on flexible substrates. Consequently, a \n<tex>$12\\ \\text{cm}^{2}$</tex>\n flexible perovskite solar module achieved a power conversion efficiency (PCE) of 16.43%. Additionally, the module exhibited enhanced mechanical stability under various bending radii and improved light stability, marking a substantial advance toward the practical application of flexible perovskite solar modules.","PeriodicalId":100648,"journal":{"name":"iEnergy","volume":"3 4","pages":"189-193"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10787155","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iEnergy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10787155/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Effective perovskite crystallization control strategies for flexible substrates with scalable processing techniques have rarely been reported and remain an important challenge. In this study, 3-mercaptobenzoic acid (3-MBA) was introduced into the perovskite precursor to modulate the crystallization dynamics, facilitating rapid nucleation while slowing down crystal growth. This approach enabled the formation of uniform, dense large-area perovskite films on flexible substrates. Consequently, a
$12\ \text{cm}^{2}$
flexible perovskite solar module achieved a power conversion efficiency (PCE) of 16.43%. Additionally, the module exhibited enhanced mechanical stability under various bending radii and improved light stability, marking a substantial advance toward the practical application of flexible perovskite solar modules.