Xu Liu;Lin Ma;Yijun Yu;Qiancheng Yu;Jinhua Wu;Zuyuan He
{"title":"Hybrid Polymer Waveguide With Large Refractive Index Contrast for High-Density Optical Interconnects","authors":"Xu Liu;Lin Ma;Yijun Yu;Qiancheng Yu;Jinhua Wu;Zuyuan He","doi":"10.1109/LPT.2024.3516365","DOIUrl":null,"url":null,"abstract":"We propose polymer waveguides with large refractive index contrast by adopting organic-inorganic hybrid resin and fluorinated acrylate resin as core and cladding materials, respectively. Both types of polymer materials are UV-curable and exhibit excellent compatibility throughout the fabrication process. The fabricated hybrid waveguides show good stabilities and the additional loss due to the adoption of two types of materials is negligible. In the experiment, we succeeded in the design and fabrication of hybrid polymer waveguides with a relative refractive index contrast (\n<inline-formula> <tex-math>$\\Delta $ </tex-math></inline-formula>\n) as high as 7.7%. The measured bending loss of the waveguide is about 0.1 dB/90° turning under a bending radius of 1 mm at a wavelength of 1310 nm which is critical in realizing waveguide with complex topology and ultra-high density. The core dimension of the waveguide is \n<inline-formula> <tex-math>$4.5 \\times \\; 4.5 \\; \\mu $ </tex-math></inline-formula>\nm2 which guarantees low-loss interconnection with a typical silicon chip. The proposed method is useful in tuning the refractive index of waveguides in a wide range and the fabricated waveguide is promising for high-density optical interconnects application.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 3","pages":"125-128"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10795174/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We propose polymer waveguides with large refractive index contrast by adopting organic-inorganic hybrid resin and fluorinated acrylate resin as core and cladding materials, respectively. Both types of polymer materials are UV-curable and exhibit excellent compatibility throughout the fabrication process. The fabricated hybrid waveguides show good stabilities and the additional loss due to the adoption of two types of materials is negligible. In the experiment, we succeeded in the design and fabrication of hybrid polymer waveguides with a relative refractive index contrast (
$\Delta $
) as high as 7.7%. The measured bending loss of the waveguide is about 0.1 dB/90° turning under a bending radius of 1 mm at a wavelength of 1310 nm which is critical in realizing waveguide with complex topology and ultra-high density. The core dimension of the waveguide is
$4.5 \times \; 4.5 \; \mu $
m2 which guarantees low-loss interconnection with a typical silicon chip. The proposed method is useful in tuning the refractive index of waveguides in a wide range and the fabricated waveguide is promising for high-density optical interconnects application.
采用有机-无机杂化树脂和氟化丙烯酸酯树脂分别作为芯材和包层材料,提出了具有大折射率对比度的聚合物波导。两种类型的聚合物材料都是紫外光固化的,并在整个制造过程中表现出优异的相容性。所制备的混合波导具有良好的稳定性,采用两种材料所造成的附加损耗可以忽略不计。在实验中,我们成功地设计和制造了相对折射率对比度($\Delta $)高达7.7的混合聚合物波导%. The measured bending loss of the waveguide is about 0.1 dB/90° turning under a bending radius of 1 mm at a wavelength of 1310 nm which is critical in realizing waveguide with complex topology and ultra-high density. The core dimension of the waveguide is $4.5 \times \; 4.5 \; \mu $ m2 which guarantees low-loss interconnection with a typical silicon chip. The proposed method is useful in tuning the refractive index of waveguides in a wide range and the fabricated waveguide is promising for high-density optical interconnects application.
期刊介绍:
IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.