Shangtong Han;Dongyue Sun;Shi Zhao;Daoxin Dai;Yaocheng Shi
{"title":"Ultra-Broadband Power Splitter With Arbitrary Splitting Ratio Based on SWG MMI Coupler","authors":"Shangtong Han;Dongyue Sun;Shi Zhao;Daoxin Dai;Yaocheng Shi","doi":"10.1109/LPT.2024.3519299","DOIUrl":null,"url":null,"abstract":"We propose and demonstrate an ultra-broadband power splitter with arbitrary splitting ratio based on subwavelength gratings (SWGs) multimode interference (MMI) coupler. SWGs are introduced to increase the optical bandwidth of the devices. Asymmetrical MMI regions are used to realize the arbitrary splitting ratio. We have demonstrated the realization of the low loss power splitters with the splitting ratio of 4:6 and 2:8. The measured results for the fabricated devices show that, for both 4:6 and 2:8 devices, loss less than 1.5 dB and splitting ratio variation less than 10% are achieved within a broad optical bandwidth from \n<inline-formula> <tex-math>$1.26~\\mu $ </tex-math></inline-formula>\nm to \n<inline-formula> <tex-math>$1.6~\\mu $ </tex-math></inline-formula>\nm.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 3","pages":"137-140"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10804690/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We propose and demonstrate an ultra-broadband power splitter with arbitrary splitting ratio based on subwavelength gratings (SWGs) multimode interference (MMI) coupler. SWGs are introduced to increase the optical bandwidth of the devices. Asymmetrical MMI regions are used to realize the arbitrary splitting ratio. We have demonstrated the realization of the low loss power splitters with the splitting ratio of 4:6 and 2:8. The measured results for the fabricated devices show that, for both 4:6 and 2:8 devices, loss less than 1.5 dB and splitting ratio variation less than 10% are achieved within a broad optical bandwidth from
$1.26~\mu $
m to
$1.6~\mu $
m.
期刊介绍:
IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.