Using Magnetic Moment for Field Reconstruction in Accelerator Magnets and Particle Tracking

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Jie Li;Kedong Wang;Xu Zhang;Kai Wang;Xueqing Yan;Kun Zhu
{"title":"Using Magnetic Moment for Field Reconstruction in Accelerator Magnets and Particle Tracking","authors":"Jie Li;Kedong Wang;Xu Zhang;Kai Wang;Xueqing Yan;Kun Zhu","doi":"10.1109/TMAG.2024.3501479","DOIUrl":null,"url":null,"abstract":"Achieving accurate transfer maps for realistic beamline elements hinges on obtaining precise 3-D magnetic field data for both straight and curved beamlines. Among various numerical methods for electromagnetic field calculations, boundary element methods can offer results that strictly comply with Maxwell’s equations. In this study, we use discrete magnetic moments for field reconstruction, storing magnetic field data locally using spherical harmonics conveniently without the need for integration. It shows efficient evaluation of arbitrary static magnetic fields, resulting in analytical representation of fields that can be differentiated and integrated. Leveraging the reconstructed field data, we use truncated power series algebra (TPSA) to compute precise design orbits and corresponding transfer maps.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 1","pages":"1-6"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10756734/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving accurate transfer maps for realistic beamline elements hinges on obtaining precise 3-D magnetic field data for both straight and curved beamlines. Among various numerical methods for electromagnetic field calculations, boundary element methods can offer results that strictly comply with Maxwell’s equations. In this study, we use discrete magnetic moments for field reconstruction, storing magnetic field data locally using spherical harmonics conveniently without the need for integration. It shows efficient evaluation of arbitrary static magnetic fields, resulting in analytical representation of fields that can be differentiated and integrated. Leveraging the reconstructed field data, we use truncated power series algebra (TPSA) to compute precise design orbits and corresponding transfer maps.
利用磁矩进行加速器磁体磁场重建和粒子跟踪
获得真实光束线元素的精确传递图取决于获得精确的直线和弯曲光束线的三维磁场数据。在电磁场计算的各种数值方法中,边界元法能够提供严格符合麦克斯韦方程组的计算结果。在本研究中,我们使用离散磁矩进行磁场重建,方便地使用球谐波局部存储磁场数据,而无需进行积分。它显示了对任意静态磁场的有效评估,从而产生了可以微分和积分的场的解析表示。利用重建的现场数据,我们使用截断幂级数代数(TPSA)计算精确的设计轨道和相应的转移图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Magnetics
IEEE Transactions on Magnetics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
14.30%
发文量
565
审稿时长
4.1 months
期刊介绍: Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信