Peng Du, Bohan Deng, Xian He, Wei Zhao, Hongyi Liu, Yuanzheng Long, Zhuting Zhang, Ziwei Li, Kai Huang, Ke Bi, Ming Lei, Hui Wu
{"title":"Roll-to-Roll Flash Joule Heating to Stabilize Electrocatalysts onto Meter-Scale Ni Foam for Advanced Water Splitting","authors":"Peng Du, Bohan Deng, Xian He, Wei Zhao, Hongyi Liu, Yuanzheng Long, Zhuting Zhang, Ziwei Li, Kai Huang, Ke Bi, Ming Lei, Hui Wu","doi":"10.1021/acsnano.4c13787","DOIUrl":null,"url":null,"abstract":"The seamless integration of electrocatalysts onto the electrode is crucial for enhancing water electrolyzers, yet it is especially challenging when scaled up to large manufacturing. Despite thorough investigation, there are few reports that tackle this integration through roll-to-roll (R2R) methodology, a technique crucial for fulfilling industrial-scale demands. Here, we develop an R2R flash Joule heating (R2R-FJH) system to process catalytic electrodes with superior performance. The electrodes exhibited improved stability and activity, showcasing an exceptional performance within an alkaline water electrolysis (AWE) system. They achieved a low operation potential of 1.66 V at 0.5 A cm<sup>–2</sup>, coupled with outstanding durability over the operation of 800 h. We further demonstrated a prototype of a rolled-up water splitting apparatus, illustrating the efficiency of R2R-FJH electrodes in producing high-purity hydrogen through advanced water oxidation. Our study emphasized the practicality and scalability of the R2R-FJH strategy in the industrial manufacturing of high-performance electrodes for water electrolysis.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"15 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c13787","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The seamless integration of electrocatalysts onto the electrode is crucial for enhancing water electrolyzers, yet it is especially challenging when scaled up to large manufacturing. Despite thorough investigation, there are few reports that tackle this integration through roll-to-roll (R2R) methodology, a technique crucial for fulfilling industrial-scale demands. Here, we develop an R2R flash Joule heating (R2R-FJH) system to process catalytic electrodes with superior performance. The electrodes exhibited improved stability and activity, showcasing an exceptional performance within an alkaline water electrolysis (AWE) system. They achieved a low operation potential of 1.66 V at 0.5 A cm–2, coupled with outstanding durability over the operation of 800 h. We further demonstrated a prototype of a rolled-up water splitting apparatus, illustrating the efficiency of R2R-FJH electrodes in producing high-purity hydrogen through advanced water oxidation. Our study emphasized the practicality and scalability of the R2R-FJH strategy in the industrial manufacturing of high-performance electrodes for water electrolysis.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.