Hybrid CIGS-Cobalt Quaterpyridine Photocathode with Backside Illumination: a New Paradigm for Solar Fuel Production

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Marc Robert, Hichem Ichou, Léo Choubrac, Garen Suna, Debashrita Sarkar, Paulo Jorge Marques Cordeiro Junior, Stéphane Diring, Fabien Pineau, Julien Bonin, Nicolas Barreau, Fabrice Odobel
{"title":"Hybrid CIGS-Cobalt Quaterpyridine Photocathode with Backside Illumination: a New Paradigm for Solar Fuel Production","authors":"Marc Robert, Hichem Ichou, Léo Choubrac, Garen Suna, Debashrita Sarkar, Paulo Jorge Marques Cordeiro Junior, Stéphane Diring, Fabien Pineau, Julien Bonin, Nicolas Barreau, Fabrice Odobel","doi":"10.1002/anie.202423727","DOIUrl":null,"url":null,"abstract":"Chalcogenide-based thin-film solar cell optimized for rear illumination and used for CO2 reduction is presented. Central to this innovation is a thinner, Cu(In,Ga)S2 chalcopyrite absorber coated with a robust metallic top layer, which potentially surpasses the performance of conventional front-illuminated designs. Using cobalt quaterpyridine molecular catalyst, photocurrent densities for CO2 reduction exceeding 10 mA/cm2 at 0.0 V vs. RHE under 1 Sun illumination, and ca. 16 mA/cm2 at -0.25 V vs. RHE were achieved in voltammetry experiments. Controlled potential electrolysis showed catalytic activity over 20 h with selectivity for CO ranging from > 92% (first 4 hours) to 86% at the end of the experiment. This approach opens limitless possibilities for employing various reduction catalysts, extending far beyond CO2 reduction. It imposes minimal constraints on absorption properties, immobilization methods, and catalyst nature, setting the stage for high-performance, adaptable PEC devices.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"38 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202423727","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chalcogenide-based thin-film solar cell optimized for rear illumination and used for CO2 reduction is presented. Central to this innovation is a thinner, Cu(In,Ga)S2 chalcopyrite absorber coated with a robust metallic top layer, which potentially surpasses the performance of conventional front-illuminated designs. Using cobalt quaterpyridine molecular catalyst, photocurrent densities for CO2 reduction exceeding 10 mA/cm2 at 0.0 V vs. RHE under 1 Sun illumination, and ca. 16 mA/cm2 at -0.25 V vs. RHE were achieved in voltammetry experiments. Controlled potential electrolysis showed catalytic activity over 20 h with selectivity for CO ranging from > 92% (first 4 hours) to 86% at the end of the experiment. This approach opens limitless possibilities for employing various reduction catalysts, extending far beyond CO2 reduction. It imposes minimal constraints on absorption properties, immobilization methods, and catalyst nature, setting the stage for high-performance, adaptable PEC devices.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信