An electro-metathesis membrane reactor for directly producing LiOH with purity exceeding 99.5%

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2024-12-31 DOI:10.1002/aic.18705
Xiao Liu, Guangzhong Cao, Songhui Wang, Weixiang Shan, Tianle Gu, Zhaoming Liu, Chenxiao Jiang, Tongwen Xu
{"title":"An electro-metathesis membrane reactor for directly producing LiOH with purity exceeding 99.5%","authors":"Xiao Liu, Guangzhong Cao, Songhui Wang, Weixiang Shan, Tianle Gu, Zhaoming Liu, Chenxiao Jiang, Tongwen Xu","doi":"10.1002/aic.18705","DOIUrl":null,"url":null,"abstract":"Producing battery-grade lithium hydroxide (LiOH) from lithium salts is essential for high-performance lithium-ion batteries. Traditional causticization methods, which involve metathesis reactions between lithium salts (such as Li<sub>2</sub>CO<sub>3</sub>, Li<sub>2</sub>SO<sub>4</sub>, or LiCl) and bases (such as Ca(OH)<sub>2</sub>, NaOH, or Ba(OH)<sub>2</sub>), often result in low concentrations of LiOH and significant lithium loss dragged by CaCO<sub>3</sub>/Na<sub>2</sub>SO<sub>4</sub>/BaSO<sub>4</sub> as solid waste. To address these challenges, we developed the “electro-metathesis” membrane reactor, which integrates the metathesis reaction with an electro-membrane system based on ion-distillation technology. This technology enhances the causticization process by regulating ion migration through ion exchange membranes and blocking impurity ions stage by stage, improving lithium recovery to 84.4% and achieving high-purity (99.6%) LiOH products. Furthermore, the process cost is 3.32 $/kg LiOH, which is lower than traditional causticization processes. This research highlights the advantages of the “electro-metathesis” membrane reactor in process efficiency, product quality, and cost management, showing strong potential for industrial applications.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"44 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18705","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Producing battery-grade lithium hydroxide (LiOH) from lithium salts is essential for high-performance lithium-ion batteries. Traditional causticization methods, which involve metathesis reactions between lithium salts (such as Li2CO3, Li2SO4, or LiCl) and bases (such as Ca(OH)2, NaOH, or Ba(OH)2), often result in low concentrations of LiOH and significant lithium loss dragged by CaCO3/Na2SO4/BaSO4 as solid waste. To address these challenges, we developed the “electro-metathesis” membrane reactor, which integrates the metathesis reaction with an electro-membrane system based on ion-distillation technology. This technology enhances the causticization process by regulating ion migration through ion exchange membranes and blocking impurity ions stage by stage, improving lithium recovery to 84.4% and achieving high-purity (99.6%) LiOH products. Furthermore, the process cost is 3.32 $/kg LiOH, which is lower than traditional causticization processes. This research highlights the advantages of the “electro-metathesis” membrane reactor in process efficiency, product quality, and cost management, showing strong potential for industrial applications.
用于直接生产纯度超过99.5%的LiOH的电分解膜反应器
从锂盐中生产电池级氢氧化锂(LiOH)对于高性能锂离子电池至关重要。传统的苛化方法涉及锂盐(如Li2CO3, Li2SO4或LiCl)和碱(如Ca(OH)2, NaOH或Ba(OH)2)之间的复分解反应,通常会导致低浓度的LiOH和CaCO3/Na2SO4/BaSO4作为固体废物拖拽的大量锂损失。为了应对这些挑战,我们开发了“电-复分解”膜反应器,该反应器将复分解反应与基于离子蒸馏技术的电膜系统相结合。该技术通过调节离子通过离子交换膜的迁移,逐步阻断杂质离子,提高了焦化过程,使锂回收率达到84.4%,获得了高纯度(99.6%)的LiOH产品。该工艺成本为3.32美元/kg LiOH,低于传统的焦化工艺。本研究突出了“电复分解”膜反应器在工艺效率、产品质量、成本管理等方面的优势,具有很强的工业应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信