Evolution of interspecific interactions underlying the nonlinear relationship between active biomass and pollutant degradation capacity in bioelectrochemical systems
Jingkai Zhao, Manli Rao, Hanyu Zhang, Qinlin Wang, Yao Shen, Jiexu Ye, Ke Feng, Shihan Zhang
{"title":"Evolution of interspecific interactions underlying the nonlinear relationship between active biomass and pollutant degradation capacity in bioelectrochemical systems","authors":"Jingkai Zhao, Manli Rao, Hanyu Zhang, Qinlin Wang, Yao Shen, Jiexu Ye, Ke Feng, Shihan Zhang","doi":"10.1016/j.watres.2024.123071","DOIUrl":null,"url":null,"abstract":"This study proposes a switching operating mode that alternates between microbial fuel cell (MFC) and microbial electrolysis cell (MEC) to restore the biofilm activity and organic pollutant degradation capacity in bioelectrochemical systems (BESs) during prolonged operation. After the model switching, the toluene degradation kinetics in BESs equipped with graphite sheet (GS) and polyaniline@carbon nanotubes (PANI@CNTs) bioanodes were elevated by 2.10 and 3.14 times, respectively. Nevertheless, the amount of active biomass in the GS and PANI@CNTs bioanodes only increased by 1.04 and 1.05 times, with the PANI@CNTs bioanode consistently outperforming in hierarchical biofilm activity and redox properties. Additionally, the distribution of functional genes across the dominant genera revealed their roles in extracellular electron transfer and the four steps of toluene degradation (primary oxidation, ring-opening, intermediate oxidation, and tricarboxylic acid cycle). Furthermore, the cooperation of substrate exchange among <em>Pseudomonas, Alicycliphilus</em>, and <em>Acidovorax</em> in the MFC mode evolved to interactions among <em>Acidovorax, Alicycliphilus</em>, and <em>Geobacter</em> in the MEC mode, which attributed to the nonlinear relationship between active biomass and pollutant degradation capacity. These results provide insights into the operating mode and interspecific interactions of BESs, with implications for practical applications.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"27 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.123071","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a switching operating mode that alternates between microbial fuel cell (MFC) and microbial electrolysis cell (MEC) to restore the biofilm activity and organic pollutant degradation capacity in bioelectrochemical systems (BESs) during prolonged operation. After the model switching, the toluene degradation kinetics in BESs equipped with graphite sheet (GS) and polyaniline@carbon nanotubes (PANI@CNTs) bioanodes were elevated by 2.10 and 3.14 times, respectively. Nevertheless, the amount of active biomass in the GS and PANI@CNTs bioanodes only increased by 1.04 and 1.05 times, with the PANI@CNTs bioanode consistently outperforming in hierarchical biofilm activity and redox properties. Additionally, the distribution of functional genes across the dominant genera revealed their roles in extracellular electron transfer and the four steps of toluene degradation (primary oxidation, ring-opening, intermediate oxidation, and tricarboxylic acid cycle). Furthermore, the cooperation of substrate exchange among Pseudomonas, Alicycliphilus, and Acidovorax in the MFC mode evolved to interactions among Acidovorax, Alicycliphilus, and Geobacter in the MEC mode, which attributed to the nonlinear relationship between active biomass and pollutant degradation capacity. These results provide insights into the operating mode and interspecific interactions of BESs, with implications for practical applications.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.