{"title":"Generation of DBPs from Dissolved Organic Matter by Solar Photolysis of Chlorine: Associated Changes of Cytotoxicity and Reactive Species","authors":"Chuze Chen, Xiating Zhao, Haoran Chen, Zhigang Li, Boyun Ma, Yuting Wang, Qiming Xian","doi":"10.1016/j.watres.2024.123074","DOIUrl":null,"url":null,"abstract":"Since elevated amounts of chlorine disinfectant were discharged into surface water, more attention should be paid to the reactions between dissolved organic matter (DOM) and chlorine under sunlight. However, disinfection byproducts (DBPs) formed from DOM by solar photolysis of chlorine, and changes of cytotoxicity during this process remain unclear. In this study, it was found that solar photolysis of chlorine significantly promoted the formation of aliphatic chlorinated DBPs and aromatic chlorinated DBPs (including chlorobenzoquinone) by 44.7–109% and 81.7–121%, respectively compared with dark chlorination. Unknown total organic chlorine contained in low molecular weight fraction (< 1kD) significantly positively correlated to the cytotoxicity of water samples. Several factors (bicarbonate, dissolved oxygen, pH, nitrate, ammonia, bromide, and iodide) affecting the radical chemistry, and the formation of DBPs under solar photolysis of chlorine were also investigated. Reactive species including HO<sup>•</sup>, Cl<sup>•</sup>, O<sub>3</sub>, and reactive nitrogen species (RNS) were responsible for forming different DBPs. Especially O<sub>3</sub> increased the formation of most categories of DBPs tested in this study, and RNS contributed to the formation of nitrogenous DBPs. This study provided more understanding of the adverse impact of overused chlorine, and reaction mechanisms between reactive species and DOM.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"93 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.123074","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Since elevated amounts of chlorine disinfectant were discharged into surface water, more attention should be paid to the reactions between dissolved organic matter (DOM) and chlorine under sunlight. However, disinfection byproducts (DBPs) formed from DOM by solar photolysis of chlorine, and changes of cytotoxicity during this process remain unclear. In this study, it was found that solar photolysis of chlorine significantly promoted the formation of aliphatic chlorinated DBPs and aromatic chlorinated DBPs (including chlorobenzoquinone) by 44.7–109% and 81.7–121%, respectively compared with dark chlorination. Unknown total organic chlorine contained in low molecular weight fraction (< 1kD) significantly positively correlated to the cytotoxicity of water samples. Several factors (bicarbonate, dissolved oxygen, pH, nitrate, ammonia, bromide, and iodide) affecting the radical chemistry, and the formation of DBPs under solar photolysis of chlorine were also investigated. Reactive species including HO•, Cl•, O3, and reactive nitrogen species (RNS) were responsible for forming different DBPs. Especially O3 increased the formation of most categories of DBPs tested in this study, and RNS contributed to the formation of nitrogenous DBPs. This study provided more understanding of the adverse impact of overused chlorine, and reaction mechanisms between reactive species and DOM.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.