Supporting Porous Metal–Organic Frameworks on Carboxylated-Wood Sponges for Direct Air Capture and Highly Selective CO2/CH4 Separation

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xupeng Zhang, Kaiqian Li, Longxin Guo, Zhiping Xu, Shuduan Deng, Ying Liu, Gang Zhu
{"title":"Supporting Porous Metal–Organic Frameworks on Carboxylated-Wood Sponges for Direct Air Capture and Highly Selective CO2/CH4 Separation","authors":"Xupeng Zhang, Kaiqian Li, Longxin Guo, Zhiping Xu, Shuduan Deng, Ying Liu, Gang Zhu","doi":"10.1021/acssuschemeng.4c05232","DOIUrl":null,"url":null,"abstract":"To effectively mitigate the global warming problem caused by excessive CO<sub>2</sub> emissions, the implementation of direct air capture (DAC) technology has emerged as one of the most promising strategies for capturing CO<sub>2</sub> from the atmosphere. The key to DAC technology hinges on the development of high-performance solid sorbent materials that demonstrate high CO<sub>2</sub> adsorption capacity and gas separation selectivity, particularly under low CO<sub>2</sub> partial pressure conditions. Herein, we have successfully developed a class of MOF@carboxylated wood sponge (MOF@CWS) hybrid sorbents, capable of efficient CO<sub>2</sub> capture from low-concentration (less than 10,000 ppm) CO<sub>2</sub> sources, achieved by embedding the porous MOF into carboxylated wood sponges (CWS) substrate via an in situ growth route. Within the MOF@CWS series, the CO<sub>2</sub> uptake capacity of Mg-MOF-74@CWS is 3.61 and 2.65 mmol/g at 1 bar, 273 and 298 K, respectively, significantly higher than those of CWS and HKUST-1@CWS. Moreover, this material exhibited outstanding DAC performance, with the CO<sub>2</sub> sorption capacity at 273 K up to 0.56 mmol/g from ambient air (ca. 400 ppm of CO<sub>2</sub>), surpassing most other solid sorbents. The obtained Mg-MOF-74@CWS also demonstrated exceptional CO<sub>2</sub>/CH<sub>4</sub> separation performance, primarily due to the unique pore structure and augmented interaction between the CO<sub>2</sub> molecules and the hybrid sorbents. The results of this study indicate that Mg-MOF-74@CWS has potential as an efficient solid sorbent for the DAC of CO<sub>2</sub>.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"344 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c05232","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To effectively mitigate the global warming problem caused by excessive CO2 emissions, the implementation of direct air capture (DAC) technology has emerged as one of the most promising strategies for capturing CO2 from the atmosphere. The key to DAC technology hinges on the development of high-performance solid sorbent materials that demonstrate high CO2 adsorption capacity and gas separation selectivity, particularly under low CO2 partial pressure conditions. Herein, we have successfully developed a class of MOF@carboxylated wood sponge (MOF@CWS) hybrid sorbents, capable of efficient CO2 capture from low-concentration (less than 10,000 ppm) CO2 sources, achieved by embedding the porous MOF into carboxylated wood sponges (CWS) substrate via an in situ growth route. Within the MOF@CWS series, the CO2 uptake capacity of Mg-MOF-74@CWS is 3.61 and 2.65 mmol/g at 1 bar, 273 and 298 K, respectively, significantly higher than those of CWS and HKUST-1@CWS. Moreover, this material exhibited outstanding DAC performance, with the CO2 sorption capacity at 273 K up to 0.56 mmol/g from ambient air (ca. 400 ppm of CO2), surpassing most other solid sorbents. The obtained Mg-MOF-74@CWS also demonstrated exceptional CO2/CH4 separation performance, primarily due to the unique pore structure and augmented interaction between the CO2 molecules and the hybrid sorbents. The results of this study indicate that Mg-MOF-74@CWS has potential as an efficient solid sorbent for the DAC of CO2.

Abstract Image

支持多孔金属有机框架在羧化木材海绵直接空气捕获和高选择性CO2/CH4分离
为了有效缓解二氧化碳排放过量导致的全球变暖问题,直接空气捕获(DAC)技术已成为从大气中捕获二氧化碳的最有前途的策略之一。DAC技术的关键在于高性能固体吸附剂材料的开发,这些材料具有高的CO2吸附能力和气体分离选择性,特别是在低CO2分压条件下。在此,我们成功开发了一类MOF@carboxylated木海绵(MOF@CWS)混合吸附剂,能够通过原位生长途径将多孔MOF嵌入羧化木海绵(CWS)基质中,从低浓度(低于10,000 ppm)的二氧化碳源中有效捕获二氧化碳。在MOF@CWS系列中,Mg-MOF-74@CWS在1 bar、273和298 K下的CO2吸收能力分别为3.61和2.65 mmol/g,显著高于CWS和HKUST-1@CWS。此外,该材料表现出优异的DAC性能,在273 K时,对环境空气(约400 ppm CO2)的CO2吸附量高达0.56 mmol/g,超过了大多数其他固体吸附剂。获得的Mg-MOF-74@CWS也表现出优异的CO2/CH4分离性能,这主要是由于其独特的孔隙结构和增强的CO2分子与杂化吸附剂之间的相互作用。本研究结果表明Mg-MOF-74@CWS有潜力作为CO2 DAC的高效固体吸附剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
文献相关原料
公司名称
产品信息
阿拉丁
magnesium acetate tetrahydrate
阿拉丁
triethylamine
阿拉丁
copper nitrate trihydrate
阿拉丁
benzene-1,3,5-tricarboxylic acid
阿拉丁
2,2,6,6-tetramethylpiperidine-1-oxyl
阿拉丁
magnesium acetate tetrahydrate
阿拉丁
triethylamine
阿拉丁
copper nitrate trihydrate
阿拉丁
benzene-1,3,5-tricarboxylic acid
阿拉丁
TEMPO
阿拉丁
magnesium acetate tetrahydrate
阿拉丁
triethylamine (TEA)
阿拉丁
copper nitrate trihydrate (Cu(NO3)2·3H2O)
阿拉丁
benzene-1,3,5-tricarboxylic acid
阿拉丁
TEMPO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信