Temperature dependence of incomplete martensitic transformation and elastocaloric properties of superelastic NiTi: Experiment and phase-field simulation

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Junyu Chen, Qi Zhang, Boxin Wei, Wenqiang Wang, Wenjing Zhang, Liping Lei, Upadrasta Ramamurty, Gang Fang
{"title":"Temperature dependence of incomplete martensitic transformation and elastocaloric properties of superelastic NiTi: Experiment and phase-field simulation","authors":"Junyu Chen, Qi Zhang, Boxin Wei, Wenqiang Wang, Wenjing Zhang, Liping Lei, Upadrasta Ramamurty, Gang Fang","doi":"10.1016/j.jmst.2024.11.052","DOIUrl":null,"url":null,"abstract":"Partial phase transformation in NiTi-based refrigerants usually enables efficient and durable elastocaloric cooling, but its thermomechanical behavior with varying temperatures remains unclear. Keeping this in view, the elastocaloric effect of NiTi under incomplete transformation across 15–100°C is investigated and a superelastic deformation window between 25–85°C is identified. Synchronous infrared thermography and digital image correlation, and an innovative macro-micro phase-field model are employed to examine martensitic transformation and elastocaloric properties of NiTi within the superelastic window. Experimental and simulated results consistently reveal that the spatiotemporal thermal profiles correlate with Lüders strain band evolution. As superelastic deformation temperature increases, strain localization intensifies, with Lüders bands favoring an inward strain growth over an outward expansion, resulting in a smaller yet more deformed martensitic transformation zone. The aggravated strain inhomogeneity makes the local endothermic undercooling tested at 85°C up to about twice (−30.05°C) that at 25°C (−15.32°C), boosting the global cooling capacity by 65%, despite constant strain. The seeming contradiction between the larger elastocaloric effect and the narrower apparent martensitic transformation zone is elucidated by recourse to the simulations. It is found that the martensitic transformation within the Lüders bands is incomplete, proceeding in a macroscopically uniform but microscopically heterogeneous manner. Elevated temperatures within the superelastic window increase the transformed volume fraction and enhance martensitic transformation, thereby strengthening the global caloric effect. The work sheds light on the interplay between partial martensitic transformation and thermal behavior in NiTi under varying superelastic deformation temperatures, providing insights for advanced elastocaloric cooling applications.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"1 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.11.052","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Partial phase transformation in NiTi-based refrigerants usually enables efficient and durable elastocaloric cooling, but its thermomechanical behavior with varying temperatures remains unclear. Keeping this in view, the elastocaloric effect of NiTi under incomplete transformation across 15–100°C is investigated and a superelastic deformation window between 25–85°C is identified. Synchronous infrared thermography and digital image correlation, and an innovative macro-micro phase-field model are employed to examine martensitic transformation and elastocaloric properties of NiTi within the superelastic window. Experimental and simulated results consistently reveal that the spatiotemporal thermal profiles correlate with Lüders strain band evolution. As superelastic deformation temperature increases, strain localization intensifies, with Lüders bands favoring an inward strain growth over an outward expansion, resulting in a smaller yet more deformed martensitic transformation zone. The aggravated strain inhomogeneity makes the local endothermic undercooling tested at 85°C up to about twice (−30.05°C) that at 25°C (−15.32°C), boosting the global cooling capacity by 65%, despite constant strain. The seeming contradiction between the larger elastocaloric effect and the narrower apparent martensitic transformation zone is elucidated by recourse to the simulations. It is found that the martensitic transformation within the Lüders bands is incomplete, proceeding in a macroscopically uniform but microscopically heterogeneous manner. Elevated temperatures within the superelastic window increase the transformed volume fraction and enhance martensitic transformation, thereby strengthening the global caloric effect. The work sheds light on the interplay between partial martensitic transformation and thermal behavior in NiTi under varying superelastic deformation temperatures, providing insights for advanced elastocaloric cooling applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信