Yangkai Xiong, Zhiqiang Fang, Jipeng Li, Zheng Li, Guoqing Wang
{"title":"MXene/Ag-Based Zwitterionic Double-Network Hydrogels with Enhanced Mechanical Strength and Antifouling Performances","authors":"Yangkai Xiong, Zhiqiang Fang, Jipeng Li, Zheng Li, Guoqing Wang","doi":"10.1021/acsami.4c19096","DOIUrl":null,"url":null,"abstract":"Biological fouling seriously jeopardizes the development of the marine industry. Although hydrogels, as a kind of state-of-the-art antifouling material, have received wide attention, their mechanical strength is still relatively weak, and the synergistic antifouling method is comparatively single, thus limiting the performance of hydrogels. Here, a zwitterionic sulfobetaine methacrylate (SBMA)-acrylamide (AM)/sodium alginate (SA) double-network (DN) antifouling hydrogel with superb antifouling ability and outstanding mechanical properties was prepared by grafting MXene/Ag (M/Ag) and the powerful biocide polyhexamethylene biguanide (PHMB). The prepared M/Ag has a great bactericidal effect (99.9%), and the DN-M/Ag-PHMB hydrogel demonstrates high tensile strength (5.8 MPa), remarkable antiprotein adhesion, bactericidal, and antialgal adhesion. This work proves that the DN-M/Ag-PHMB hydrogel has an exceptional antifouling ability in all three stages of biofouling formation and has a promising future as a new type of green marine antifouling material.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"33 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c19096","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biological fouling seriously jeopardizes the development of the marine industry. Although hydrogels, as a kind of state-of-the-art antifouling material, have received wide attention, their mechanical strength is still relatively weak, and the synergistic antifouling method is comparatively single, thus limiting the performance of hydrogels. Here, a zwitterionic sulfobetaine methacrylate (SBMA)-acrylamide (AM)/sodium alginate (SA) double-network (DN) antifouling hydrogel with superb antifouling ability and outstanding mechanical properties was prepared by grafting MXene/Ag (M/Ag) and the powerful biocide polyhexamethylene biguanide (PHMB). The prepared M/Ag has a great bactericidal effect (99.9%), and the DN-M/Ag-PHMB hydrogel demonstrates high tensile strength (5.8 MPa), remarkable antiprotein adhesion, bactericidal, and antialgal adhesion. This work proves that the DN-M/Ag-PHMB hydrogel has an exceptional antifouling ability in all three stages of biofouling formation and has a promising future as a new type of green marine antifouling material.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.