Unveiling the Mechanism of Dense Cathode‒Electrolyte Interphase Formation in Lithium-Ion Batteries Using Cyclophosphamide Additive

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Jaeho Lee, Young-Kyu Han
{"title":"Unveiling the Mechanism of Dense Cathode‒Electrolyte Interphase Formation in Lithium-Ion Batteries Using Cyclophosphamide Additive","authors":"Jaeho Lee, Young-Kyu Han","doi":"10.1016/j.electacta.2024.145628","DOIUrl":null,"url":null,"abstract":"High-voltage lithium-ion batteries (LIBs) have attracted increasing attention for their high energy density. However, at high voltages, cathode degradation and electrolyte decomposition trigger parasitic side reactions that deteriorate battery cycle performance. These issues have been addressed through various studies on cathode‒electrolyte interphase (CEI)-forming additives. In particular, 2-ethylmethylamino-1,3,2-dioxaphospholane 2-oxide (EMPA), a cyclophosphamide (CPA) CEI-forming additive, has shown excellent capacity retention and battery cycle performance at high voltages when added at only 0.5 vol% in LIB systems. However, the molecular-level understanding of CPA additives remains limited. Here, our first-principles calculations reveal that EMPA oxidizes before the solvent in the electrolyte while also scavenging HF and H<sub>2</sub>O. Specifically, calculations of the dimerization of asymmetric EMPA trimers, represented by two identical [(EMPA)<sub>3</sub>OH] species forming a [(EMPA)<sub>3</sub>OH]<sub>2</sub> dimer, imply that after oxidation these two identical EMPA polymers bind very strongly and in very close proximity. This was due to the favorable electrostatic interactions with the more widely distributed polar surface in EMPA, in addition to the small number of carbons in the alkyl groups of the amine moiety in CPA. We suggest that the asymmetry in the alkyl groups of the amine moiety in CPA is closely related to the excellent CEI formation observed in the experimental results.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"10 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2024.145628","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

High-voltage lithium-ion batteries (LIBs) have attracted increasing attention for their high energy density. However, at high voltages, cathode degradation and electrolyte decomposition trigger parasitic side reactions that deteriorate battery cycle performance. These issues have been addressed through various studies on cathode‒electrolyte interphase (CEI)-forming additives. In particular, 2-ethylmethylamino-1,3,2-dioxaphospholane 2-oxide (EMPA), a cyclophosphamide (CPA) CEI-forming additive, has shown excellent capacity retention and battery cycle performance at high voltages when added at only 0.5 vol% in LIB systems. However, the molecular-level understanding of CPA additives remains limited. Here, our first-principles calculations reveal that EMPA oxidizes before the solvent in the electrolyte while also scavenging HF and H2O. Specifically, calculations of the dimerization of asymmetric EMPA trimers, represented by two identical [(EMPA)3OH] species forming a [(EMPA)3OH]2 dimer, imply that after oxidation these two identical EMPA polymers bind very strongly and in very close proximity. This was due to the favorable electrostatic interactions with the more widely distributed polar surface in EMPA, in addition to the small number of carbons in the alkyl groups of the amine moiety in CPA. We suggest that the asymmetry in the alkyl groups of the amine moiety in CPA is closely related to the excellent CEI formation observed in the experimental results.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信