{"title":"Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities","authors":"Tong Li, Xiaoyu Wang, Yuting Wang, Yihong Zhang, Sirong Li, Wanling Liu, Shujie Liu, Yufeng Liu, Hang Xing, Ken-ichi Otake, Susumu Kitagawa, Jiangjiexing Wu, Hao Dong, Hui Wei","doi":"10.1038/s41467-024-55163-4","DOIUrl":null,"url":null,"abstract":"<p>Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal–organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases). The confinement of poly(acrylic acid) (PAA) into the channels of peroxidase-mimicking PCN-222-Fe (PCN = porous coordination network) nanozyme lowers its microenvironmental pH, enabling it to perform its best activity at pH 7.4 and to solve pH mismatch in cascade systems coupled with acid-denatured oxidases. Experimental investigations and molecular dynamics simulations reveal that PAA not only donates protons but also holds protons through the salt bridges between hydroniums and deprotonated carboxyl groups in neutral pH condition. Therefore, the confinement of poly(ethylene imine) increases the microenvironmental pH, leading to the enhanced hydrolase-mimicking activity of MOF nanozymes. This strategy is expected to pave a promising way for designing high-performance nanozymes and nanocatalysts for practical applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"175 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55163-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal–organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases). The confinement of poly(acrylic acid) (PAA) into the channels of peroxidase-mimicking PCN-222-Fe (PCN = porous coordination network) nanozyme lowers its microenvironmental pH, enabling it to perform its best activity at pH 7.4 and to solve pH mismatch in cascade systems coupled with acid-denatured oxidases. Experimental investigations and molecular dynamics simulations reveal that PAA not only donates protons but also holds protons through the salt bridges between hydroniums and deprotonated carboxyl groups in neutral pH condition. Therefore, the confinement of poly(ethylene imine) increases the microenvironmental pH, leading to the enhanced hydrolase-mimicking activity of MOF nanozymes. This strategy is expected to pave a promising way for designing high-performance nanozymes and nanocatalysts for practical applications.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.