Metabolic enhancement contributed by horizontal gene transfer is essential for dietary specialization in leaf beetles

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuxin Zhang, Chengjie Tu, Jianyang Bai, Xiayu Li, Ziyue Sun, Letian Xu
{"title":"Metabolic enhancement contributed by horizontal gene transfer is essential for dietary specialization in leaf beetles","authors":"Yuxin Zhang, Chengjie Tu, Jianyang Bai, Xiayu Li, Ziyue Sun, Letian Xu","doi":"10.1073/pnas.2415717122","DOIUrl":null,"url":null,"abstract":"Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources. Adults of the leaf beetle <jats:italic>Plagiodera versicolora</jats:italic> (Coleoptera) preferentially consume new leaves; nevertheless, we found that they selectively oviposit on mature leaves, thereby establishing a distinct dietary niche separation between adults and larvae. Based on the de novo assembled chromosome-level genome, we identified two horizontally transferred genes with cellulose degradation potential, belonging to the glycosyl hydrolase 48 family ( <jats:italic>GH48-1</jats:italic> and <jats:italic>GH48-2</jats:italic> ). Prokaryotic expression of the HGTs confirmed the cellulose degradation capability of the two genes. Knockdown of GH48 significantly hampered the growth and survival rate of larvae feeding on mature leaves compared to wild-type larvae, with no similar effect observed in adults. Replenishing the GH48-expressing bacteria compensated for the knockdown of these two genes and recurred larval adaptability to mature leaves. Taken together, our results highlight the advantage and metabolic enhancement conferred by the two cellulose-degrading HGTs in <jats:italic>P. versicolora</jats:italic> larvae, enabling their development on cellulose-enriched mature leaves and underscoring the indispensable role of HGTs in facilitating the adaptation of leaf beetles to plants.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"204 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2415717122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources. Adults of the leaf beetle Plagiodera versicolora (Coleoptera) preferentially consume new leaves; nevertheless, we found that they selectively oviposit on mature leaves, thereby establishing a distinct dietary niche separation between adults and larvae. Based on the de novo assembled chromosome-level genome, we identified two horizontally transferred genes with cellulose degradation potential, belonging to the glycosyl hydrolase 48 family ( GH48-1 and GH48-2 ). Prokaryotic expression of the HGTs confirmed the cellulose degradation capability of the two genes. Knockdown of GH48 significantly hampered the growth and survival rate of larvae feeding on mature leaves compared to wild-type larvae, with no similar effect observed in adults. Replenishing the GH48-expressing bacteria compensated for the knockdown of these two genes and recurred larval adaptability to mature leaves. Taken together, our results highlight the advantage and metabolic enhancement conferred by the two cellulose-degrading HGTs in P. versicolora larvae, enabling their development on cellulose-enriched mature leaves and underscoring the indispensable role of HGTs in facilitating the adaptation of leaf beetles to plants.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信