Soil microbial diversity-function relationships are changed by human activity at a landscape scale

IF 3.9 2区 农林科学 Q1 AGRONOMY
Shenglei Hao, Zewen Hei, Jiayang Ma, Qi Shao, Tingyao Cai, Hang-Wei Hu, Manuel Delgado-Baquerizo, Yongliang Chen
{"title":"Soil microbial diversity-function relationships are changed by human activity at a landscape scale","authors":"Shenglei Hao, Zewen Hei, Jiayang Ma, Qi Shao, Tingyao Cai, Hang-Wei Hu, Manuel Delgado-Baquerizo, Yongliang Chen","doi":"10.1007/s11104-024-07174-9","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and Aims</h3><p>Soil microorganisms are crucial contributors to the regulation of diverse ecosystem functions in natural ecosystems. However, the influence of land use types on the relationships between soil microbial diversity and soil multifunctionality (SMF) has been scarcely evaluated at a landscape level.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>A high-resolution field survey was undertaken with 228 sites (2 × 2 km<sup>2</sup> grid each) to investigate the influence of four land uses on the relationship between soil microbial diversity (bacteria, fungi and protists) and SMF in Pinggu District, China.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Soil microbial diversity index and multifunctionality were the highest in orchards and natural forests compared to plantations and cropland. Also, while soil microbial diversity index and SMF were positively correlated across all land uses and in natural forests. However, this relationship was decoupled within cropland, orchards and plantations. Increases in module richness within ecological networks were also important predictors of SMF, especially in cropland and orchards.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>This study provides new insights on the impacts of land use types in changing the fundamental relationship between soil microbial diversity and function.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"67 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07174-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Aims

Soil microorganisms are crucial contributors to the regulation of diverse ecosystem functions in natural ecosystems. However, the influence of land use types on the relationships between soil microbial diversity and soil multifunctionality (SMF) has been scarcely evaluated at a landscape level.

Methods

A high-resolution field survey was undertaken with 228 sites (2 × 2 km2 grid each) to investigate the influence of four land uses on the relationship between soil microbial diversity (bacteria, fungi and protists) and SMF in Pinggu District, China.

Results

Soil microbial diversity index and multifunctionality were the highest in orchards and natural forests compared to plantations and cropland. Also, while soil microbial diversity index and SMF were positively correlated across all land uses and in natural forests. However, this relationship was decoupled within cropland, orchards and plantations. Increases in module richness within ecological networks were also important predictors of SMF, especially in cropland and orchards.

Conclusion

This study provides new insights on the impacts of land use types in changing the fundamental relationship between soil microbial diversity and function.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant and Soil
Plant and Soil 农林科学-农艺学
CiteScore
8.20
自引率
8.20%
发文量
543
审稿时长
2.5 months
期刊介绍: Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信