Active rheology control of cementitious materials: New insights from magneto-responsive aggregates

IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Yiyuan Zhang, Yaxin Tao, Jose R.A. Godinho, Kim Van Tittelboom, Karel Lesage, Geert De Schutter
{"title":"Active rheology control of cementitious materials: New insights from magneto-responsive aggregates","authors":"Yiyuan Zhang, Yaxin Tao, Jose R.A. Godinho, Kim Van Tittelboom, Karel Lesage, Geert De Schutter","doi":"10.1016/j.cemconres.2024.107707","DOIUrl":null,"url":null,"abstract":"This study aims to achieve active rheology control of cementitious materials from the new view of magneto-responsive aggregates. It provides a sound experimental validation, qualitative analysis and quantitative characterization of magnetorheological response and mechanism of cementitious materials containing responsive aggregates under a nozzle/pipe-like (inline) external magnetic field. Specially, the aggregate shape indicators, rheological responses and micro-/meso- structures are described. The physical, chemical and geometrical features of aggregates were determined by X-ray diffraction analysis (XRD), vibrating sample magnetometer (VSM), loose packing fraction, optical microscopy and X-ray computed tomography (CT). The slow penetration test and vane test were conducted to measure the structural build-up of fresh samples with and without an inline magnetic intervention by using a rheometer-based customized test setup. The spatial distribution of magneto-responsive aggregates was determined by employing X-ray CT. The internal skeletal contact properties of magneto-responsive aggregates including cluster orientation, cluster aspect ratio, cluster elongation, contact point number, contact length and contact area were characterized quantitatively from the 3D image. A newly developed magneto-responsive cement mortar which can adjust rheological properties in time and on demand was achieved. The alignments of magneto-responsive aggregates along the magnetic induction lines were visualized. The orientation of magneto-responsive aggregate clusters showed concentrated distribution. With the decrease of the cement-to-aggregate ratio and increase in the size of magneto-responsive aggregates, the field-induced yield stress and torque increased significantly, which also influenced the contact properties of magneto-responsive aggregates. These results are beneficial for the application of active rheology control of magneto-responsive cementitious materials.","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"325 1","pages":""},"PeriodicalIF":10.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cemconres.2024.107707","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to achieve active rheology control of cementitious materials from the new view of magneto-responsive aggregates. It provides a sound experimental validation, qualitative analysis and quantitative characterization of magnetorheological response and mechanism of cementitious materials containing responsive aggregates under a nozzle/pipe-like (inline) external magnetic field. Specially, the aggregate shape indicators, rheological responses and micro-/meso- structures are described. The physical, chemical and geometrical features of aggregates were determined by X-ray diffraction analysis (XRD), vibrating sample magnetometer (VSM), loose packing fraction, optical microscopy and X-ray computed tomography (CT). The slow penetration test and vane test were conducted to measure the structural build-up of fresh samples with and without an inline magnetic intervention by using a rheometer-based customized test setup. The spatial distribution of magneto-responsive aggregates was determined by employing X-ray CT. The internal skeletal contact properties of magneto-responsive aggregates including cluster orientation, cluster aspect ratio, cluster elongation, contact point number, contact length and contact area were characterized quantitatively from the 3D image. A newly developed magneto-responsive cement mortar which can adjust rheological properties in time and on demand was achieved. The alignments of magneto-responsive aggregates along the magnetic induction lines were visualized. The orientation of magneto-responsive aggregate clusters showed concentrated distribution. With the decrease of the cement-to-aggregate ratio and increase in the size of magneto-responsive aggregates, the field-induced yield stress and torque increased significantly, which also influenced the contact properties of magneto-responsive aggregates. These results are beneficial for the application of active rheology control of magneto-responsive cementitious materials.
胶凝材料的活性流变控制:来自磁响应聚集体的新见解
本研究旨在从磁响应聚集体的新观点出发,实现胶凝材料的主动流变控制。它提供了一个良好的实验验证,定性分析和定量表征胶凝材料的磁流变响应和机制下的响应骨料喷嘴/管状(在线)外磁场。特别地,描述了聚集体的形状指标、流变响应和微/细观结构。通过x射线衍射分析(XRD)、振动样品磁强计(VSM)、松散堆积率、光学显微镜和x射线计算机断层扫描(CT)等方法测定了团聚体的物理、化学和几何特征。通过使用基于流变仪的定制测试装置,进行了缓慢渗透测试和叶片测试,以测量在有和没有在线磁干预的情况下新鲜样品的结构积聚。利用x射线CT测定了磁响应聚集体的空间分布。通过三维图像定量表征了磁响应聚集体的内部骨架接触特性,包括团簇取向、团簇长宽比、团簇伸长、接触点数、接触长度和接触面积。研制了一种新型的磁响应水泥砂浆,该砂浆可以及时、按需调节其流变性能。磁响应聚集体沿磁感应线排列的可视化。磁响应聚集体的取向呈集中分布。随着水泥与骨料比的降低和磁响应骨料粒径的增大,场致屈服应力和场致扭矩显著增大,这也影响了磁响应骨料的接触性能。这些结果有利于磁响应胶凝材料主动流变控制的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cement and Concrete Research
Cement and Concrete Research 工程技术-材料科学:综合
CiteScore
20.90
自引率
12.30%
发文量
318
审稿时长
53 days
期刊介绍: Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信