Stimuli-responsive hydrogels for bone tissue engineering.

Biomaterials Translational Pub Date : 2024-09-28 eCollection Date: 2024-01-01 DOI:10.12336/biomatertransl.2024.03.004
Congyang Xue, Liping Chen, Nan Wang, Heng Chen, Wenqiang Xu, Zhipeng Xi, Qing Sun, Ran Kang, Lin Xie, Xin Liu
{"title":"Stimuli-responsive hydrogels for bone tissue engineering.","authors":"Congyang Xue, Liping Chen, Nan Wang, Heng Chen, Wenqiang Xu, Zhipeng Xi, Qing Sun, Ran Kang, Lin Xie, Xin Liu","doi":"10.12336/biomatertransl.2024.03.004","DOIUrl":null,"url":null,"abstract":"<p><p>The treatment of bone defects remains a great clinical challenge. With the development of science and technology, bone tissue engineering technology has emerged, which can mimic the structure and function of natural bone tissues and create solutions for repairing or replacing human bone tissues based on biocompatible materials, cells and bioactive factors. Hydrogels are favoured by researchers due to their high water content, degradability and good biocompatibility. This paper describes the hydrogel sources, roles and applications. According to the different types of stimuli, hydrogels are classified into three categories: physical, chemical and biochemical responses, and the applications of different stimuli-responsive hydrogels in bone tissue engineering are summarised. Stimuli-responsive hydrogels can form a semi-solid with good adhesion based on different physiological environments, which can carry a variety of bone-enhancing bioactive factors, drugs and cells, and have a long retention time in the local area, which is conducive to a long period of controlled release; they can also form a scaffold for constructing tissue repair, which can jointly promote the repair of bone injury sites. However, it also has many defects, such as poor biocompatibility, immunogenicity and mechanical stability. Further studies are still needed in the future to facilitate its clinical translation.</p>","PeriodicalId":58820,"journal":{"name":"Biomaterials Translational","volume":"5 3","pages":"257-273"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681187/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Translational","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12336/biomatertransl.2024.03.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The treatment of bone defects remains a great clinical challenge. With the development of science and technology, bone tissue engineering technology has emerged, which can mimic the structure and function of natural bone tissues and create solutions for repairing or replacing human bone tissues based on biocompatible materials, cells and bioactive factors. Hydrogels are favoured by researchers due to their high water content, degradability and good biocompatibility. This paper describes the hydrogel sources, roles and applications. According to the different types of stimuli, hydrogels are classified into three categories: physical, chemical and biochemical responses, and the applications of different stimuli-responsive hydrogels in bone tissue engineering are summarised. Stimuli-responsive hydrogels can form a semi-solid with good adhesion based on different physiological environments, which can carry a variety of bone-enhancing bioactive factors, drugs and cells, and have a long retention time in the local area, which is conducive to a long period of controlled release; they can also form a scaffold for constructing tissue repair, which can jointly promote the repair of bone injury sites. However, it also has many defects, such as poor biocompatibility, immunogenicity and mechanical stability. Further studies are still needed in the future to facilitate its clinical translation.

用于骨组织工程的刺激反应水凝胶。
骨缺损的治疗仍然是一个巨大的临床挑战。随着科学技术的发展,骨组织工程技术应运而生,以生物相容性材料、细胞和生物活性因子为基础,模拟天然骨组织的结构和功能,创造修复或替代人体骨组织的解决方案。水凝胶因其高含水量、可降解性和良好的生物相容性而受到研究人员的青睐。本文介绍了水凝胶的来源、作用和应用。根据刺激类型的不同,将水凝胶分为物理反应、化学反应和生化反应三大类,并综述了不同刺激反应水凝胶在骨组织工程中的应用。刺激反应型水凝胶可根据不同的生理环境形成具有良好粘附性的半固体,可携带多种增骨生物活性因子、药物和细胞,且在局部保留时间长,有利于长时间的控释;它们还可以形成构建组织修复的支架,共同促进骨损伤部位的修复。然而,它也有许多缺陷,如生物相容性、免疫原性和机械稳定性差。未来还需要进一步的研究来促进其临床转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信