{"title":"Dye amount quantification of Papanicolaou-stained cytological images by multispectral unmixing: spectral analysis of cytoplasmic mucin.","authors":"Saori Takeyama, Tomoaki Watanabe, Nanxin Gong, Masahiro Yamaguchi, Takumi Urata, Fumikazu Kimura, Keiko Ishii","doi":"10.1117/1.JMI.12.1.017501","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The color of Papanicolaou-stained specimens is a crucial feature in cytology diagnosis. However, the quantification of color using digital images is challenging due to the variations in the staining process and characteristics of imaging equipment. The dye amount estimation of stained specimens is helpful for quantitatively interpreting the color based on a physical model. It has been realized with color unmixing and applied to staining with three or fewer dyes. Nevertheless, the Papanicolaou stain comprises five dyes. Thus, we employ multispectral imaging with more channels for quantitative analysis of the Papanicolaou-stained cervical cytology samples.</p><p><strong>Approach: </strong>We estimate the dye amount map from a 14-band multispectral observation capturing a Papanicolaou-stained specimen using the actual measured spectral characteristics of the single-stained samples. The estimated dye amount maps were employed for the quantitative interpretation of the color of cytoplasmic mucin of lobular endocervical glandular hyperplasia (LEGH) and normal endocervical (EC) cells in a uterine cervical lesion.</p><p><strong>Results: </strong>We demonstrated the dye amount estimation performance of the proposed method using single-stain images and Papanicolaou-stain images. Moreover, the yellowish color in the LEGH cells is found to be interpreted with more orange G (OG) and less Eosin Y (EY) dye amounts. We also elucidated that LEGH and EC cells could be classified using linear classifiers from the dye amount.</p><p><strong>Conclusions: </strong>Multispectral imaging enables the quantitative analysis of dye amount maps of Papanicolaou-stained cytology specimens. The effectiveness is demonstrated in interpreting and classifying the cytoplasmic mucin of EC and LEGH cells in cervical cytology.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 1","pages":"017501"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681424/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.1.017501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The color of Papanicolaou-stained specimens is a crucial feature in cytology diagnosis. However, the quantification of color using digital images is challenging due to the variations in the staining process and characteristics of imaging equipment. The dye amount estimation of stained specimens is helpful for quantitatively interpreting the color based on a physical model. It has been realized with color unmixing and applied to staining with three or fewer dyes. Nevertheless, the Papanicolaou stain comprises five dyes. Thus, we employ multispectral imaging with more channels for quantitative analysis of the Papanicolaou-stained cervical cytology samples.
Approach: We estimate the dye amount map from a 14-band multispectral observation capturing a Papanicolaou-stained specimen using the actual measured spectral characteristics of the single-stained samples. The estimated dye amount maps were employed for the quantitative interpretation of the color of cytoplasmic mucin of lobular endocervical glandular hyperplasia (LEGH) and normal endocervical (EC) cells in a uterine cervical lesion.
Results: We demonstrated the dye amount estimation performance of the proposed method using single-stain images and Papanicolaou-stain images. Moreover, the yellowish color in the LEGH cells is found to be interpreted with more orange G (OG) and less Eosin Y (EY) dye amounts. We also elucidated that LEGH and EC cells could be classified using linear classifiers from the dye amount.
Conclusions: Multispectral imaging enables the quantitative analysis of dye amount maps of Papanicolaou-stained cytology specimens. The effectiveness is demonstrated in interpreting and classifying the cytoplasmic mucin of EC and LEGH cells in cervical cytology.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.