Giavanna Jadick, Maya Ventura, Patrick J La Rivière
{"title":"Utility of photon-counting detectors for MV-kV dual-energy computed tomography imaging.","authors":"Giavanna Jadick, Maya Ventura, Patrick J La Rivière","doi":"10.1117/1.JMI.11.S1.S12811","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>High soft-tissue contrast imaging is essential for effective radiotherapy treatment. This could potentially be realized using both megavoltage and kilovoltage x-ray sources available on some therapy treatment systems to perform \"MV-kV\" dual-energy (DE) computed tomography (CT). However, noisy megavoltage images obtained with existing energy-integrating detectors (EIDs) are a limiting factor for clinical translation. We explore the potential for non-spectral photon-counting detectors (PCDs) to improve MV-kV image quality simply by equally weighting all MV photons rather than up-weighting the less informative, lower contrast high-energy photons as in an EID.</p><p><strong>Approach: </strong>Three computational methods were applied to compare non-spectral PCDs with EIDs in MV-kV DE imaging. A single-line integral estimation theory approach was used to calculate the basis material signal-to-noise ratio (SNR) of tissue (1 to 50 cm) and bone (0.1 to 10 cm). CT images of a tissue cylinder with seven bone inserts (densities 1.0 to <math><mrow><mn>2.2</mn> <mtext> </mtext> <mi>g</mi> <mo>/</mo> <msup><mrow><mi>cm</mi></mrow> <mrow><mn>3</mn></mrow> </msup> </mrow> </math> ) were simulated to assess material decomposition accuracy. Multiple noisy simulations of an anthropomorphic phantom were performed to generate pixel-by-pixel noise profiles.</p><p><strong>Results: </strong>PCDs yielded a 15% to 45% improvement in single-line integral SNR for both materials. In CT simulations, similar material decomposition accuracy was achieved, with both EIDs and PCDs slightly underestimating bone density. However, PCDs yield a higher contrast-to-noise ratio and more uniform noise texture than EIDs in virtual monoenergetic images.</p><p><strong>Conclusions: </strong>We demonstrate the potential for improved MV-kV DE CT imaging using non-spectral PCDs and quantify the degree of improvement in a range of object compositions. This work motivates the experimental assessment of PCDs for megavoltage imaging and the potential clinical translation of PCDs to radiotherapy imaging.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 Suppl 1","pages":"S12811"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670364/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.S1.S12811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: High soft-tissue contrast imaging is essential for effective radiotherapy treatment. This could potentially be realized using both megavoltage and kilovoltage x-ray sources available on some therapy treatment systems to perform "MV-kV" dual-energy (DE) computed tomography (CT). However, noisy megavoltage images obtained with existing energy-integrating detectors (EIDs) are a limiting factor for clinical translation. We explore the potential for non-spectral photon-counting detectors (PCDs) to improve MV-kV image quality simply by equally weighting all MV photons rather than up-weighting the less informative, lower contrast high-energy photons as in an EID.
Approach: Three computational methods were applied to compare non-spectral PCDs with EIDs in MV-kV DE imaging. A single-line integral estimation theory approach was used to calculate the basis material signal-to-noise ratio (SNR) of tissue (1 to 50 cm) and bone (0.1 to 10 cm). CT images of a tissue cylinder with seven bone inserts (densities 1.0 to ) were simulated to assess material decomposition accuracy. Multiple noisy simulations of an anthropomorphic phantom were performed to generate pixel-by-pixel noise profiles.
Results: PCDs yielded a 15% to 45% improvement in single-line integral SNR for both materials. In CT simulations, similar material decomposition accuracy was achieved, with both EIDs and PCDs slightly underestimating bone density. However, PCDs yield a higher contrast-to-noise ratio and more uniform noise texture than EIDs in virtual monoenergetic images.
Conclusions: We demonstrate the potential for improved MV-kV DE CT imaging using non-spectral PCDs and quantify the degree of improvement in a range of object compositions. This work motivates the experimental assessment of PCDs for megavoltage imaging and the potential clinical translation of PCDs to radiotherapy imaging.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.